These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 25636037)

  • 21. Phosphoproteomics reveals the effect of ethylene in soybean root under flooding stress.
    Yin X; Sakata K; Komatsu S
    J Proteome Res; 2014 Dec; 13(12):5618-34. PubMed ID: 25316100
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conserved Gene Expression Programs in Developing Roots from Diverse Plants.
    Huang L; Schiefelbein J
    Plant Cell; 2015 Aug; 27(8):2119-32. PubMed ID: 26265761
    [TBL] [Abstract][Full Text] [Related]  

  • 23.
    Liu C; Zhang C; Fan M; Ma W; Chen M; Cai F; Liu K; Lin F
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30072588
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-wide transcriptome dissection of the rice root system: implications for developmental and physiological functions.
    Takehisa H; Sato Y; Igarashi M; Abiko T; Antonio BA; Kamatsuki K; Minami H; Namiki N; Inukai Y; Nakazono M; Nagamura Y
    Plant J; 2012 Jan; 69(1):126-40. PubMed ID: 21895812
    [TBL] [Abstract][Full Text] [Related]  

  • 25. OsFIE2 plays an essential role in the regulation of rice vegetative and reproductive development.
    Li S; Zhou B; Peng X; Kuang Q; Huang X; Yao J; Du B; Sun MX
    New Phytol; 2014 Jan; 201(1):66-79. PubMed ID: 24020752
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative proteomics reveals that peroxidases play key roles in post-flooding recovery in soybean roots.
    Khan MN; Sakata K; Hiraga S; Komatsu S
    J Proteome Res; 2014 Dec; 13(12):5812-28. PubMed ID: 25284625
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparative genomic and transcriptomic analysis at the level of isolated root hair cells reveals new conserved root hair regulatory elements.
    Qiao Z; Pingault L; Zogli P; Langevin M; Rech N; Farmer A; Libault M
    Plant Mol Biol; 2017 Aug; 94(6):641-655. PubMed ID: 28687904
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Particular significance of SRD2-dependent snRNA accumulation in polarized pattern generation during lateral root development of Arabidopsis.
    Ohtani M; Demura T; Sugiyama M
    Plant Cell Physiol; 2010 Dec; 51(12):2002-12. PubMed ID: 20965997
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A zinc finger protein gene ZFP5 integrates phytohormone signaling to control root hair development in Arabidopsis.
    An L; Zhou Z; Sun L; Yan A; Xi W; Yu N; Cai W; Chen X; Yu H; Schiefelbein J; Gan Y
    Plant J; 2012 Nov; 72(3):474-90. PubMed ID: 22762888
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Co-ordination and divergence of cell-specific transcription and translation of genes in arabidopsis root cells.
    Rajasundaram D; Selbig J; Persson S; Klie S
    Ann Bot; 2014 Oct; 114(6):1109-23. PubMed ID: 25149544
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Non-cell-autonomous microRNA165 acts in a dose-dependent manner to regulate multiple differentiation status in the Arabidopsis root.
    Miyashima S; Koi S; Hashimoto T; Nakajima K
    Development; 2011 Jun; 138(11):2303-13. PubMed ID: 21558378
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tracing Plant Defense Responses in Roots upon MAMP/DAMP Treatment.
    Hiruma K; Saijo Y
    Methods Mol Biol; 2016; 1398():319-22. PubMed ID: 26867634
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ABA-dependent and -independent G-protein signaling in Arabidopsis roots revealed through an iTRAQ proteomics approach.
    Alvarez S; Hicks LM; Pandey S
    J Proteome Res; 2011 Jul; 10(7):3107-22. PubMed ID: 21545083
    [TBL] [Abstract][Full Text] [Related]  

  • 34. miR396a-Mediated basic helix-loop-helix transcription factor bHLH74 repression acts as a regulator for root growth in Arabidopsis seedlings.
    Bao M; Bian H; Zha Y; Li F; Sun Y; Bai B; Chen Z; Wang J; Zhu M; Han N
    Plant Cell Physiol; 2014 Jul; 55(7):1343-53. PubMed ID: 24793750
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational modeling of epidermal cell fate determination systems.
    Ryu KH; Zheng X; Huang L; Schiefelbein J
    Curr Opin Plant Biol; 2013 Feb; 16(1):5-10. PubMed ID: 23287386
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of shoot and root development through mutual signaling.
    Puig J; Pauluzzi G; Guiderdoni E; Gantet P
    Mol Plant; 2012 Sep; 5(5):974-83. PubMed ID: 22628542
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The AP2/EREBP gene PUCHI Co-Acts with LBD16/ASL18 and LBD18/ASL20 downstream of ARF7 and ARF19 to regulate lateral root development in Arabidopsis.
    Kang NY; Lee HW; Kim J
    Plant Cell Physiol; 2013 Aug; 54(8):1326-34. PubMed ID: 23749813
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cassava (Manihot esculenta Krantz) genome harbors KNOX genes differentially expressed during storage root development.
    Guo D; Li HL; Tang X; Peng SQ
    Genet Mol Res; 2014 Dec; 13(4):10714-26. PubMed ID: 25526192
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Auxin biosynthetic gene TAR2 is involved in low nitrogen-mediated reprogramming of root architecture in Arabidopsis.
    Ma W; Li J; Qu B; He X; Zhao X; Li B; Fu X; Tong Y
    Plant J; 2014 Apr; 78(1):70-9. PubMed ID: 24460551
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A single-cell Arabidopsis root atlas reveals developmental trajectories in wild-type and cell identity mutants.
    Shahan R; Hsu CW; Nolan TM; Cole BJ; Taylor IW; Greenstreet L; Zhang S; Afanassiev A; Vlot AHC; Schiebinger G; Benfey PN; Ohler U
    Dev Cell; 2022 Feb; 57(4):543-560.e9. PubMed ID: 35134336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.