These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
479 related articles for article (PubMed ID: 25636081)
1. Evaluation of Diffuse Reflection Infrared Spectrometry for End-of-Shift Measurement of α-quartz in Coal Dust Samples. Miller AL; Murphy NC; Bayman SJ; Briggs ZP; Kilpatrick AD; Quinn CA; Wadas MR; Cauda EG; Griffiths PR J Occup Environ Hyg; 2015; 12(7):421-30. PubMed ID: 25636081 [TBL] [Abstract][Full Text] [Related]
2. Replacement of filters for respirable quartz measurement in coal mine dust by infrared spectroscopy. Farcas D; Lee T; Chisholm WP; Soo JC; Harper M J Occup Environ Hyg; 2016; 13(2):D16-22. PubMed ID: 26375614 [TBL] [Abstract][Full Text] [Related]
3. Multicomponent Measurement of Respirable Quartz, Kaolinite and Coal Dust using Fourier Transform Infrared Spectroscopy (FTIR): A Comparison Between Partial Least Squares and Principal Component Regressions. Stacey P; Clegg F; Sammon C Ann Work Expo Health; 2022 Jun; 66(5):644-655. PubMed ID: 34595523 [TBL] [Abstract][Full Text] [Related]
4. Application of a Fourier Transform Infrared (FTIR) Principal Component Regression (PCR) Chemometric Method for the Quantification of Respirable Crystalline Silica (Quartz), Kaolinite, and Coal in Coal Mine Dusts from Australia, UK, and South Africa. Stacey P; Clegg F; Rhyder G; Sammon C Ann Work Expo Health; 2022 Jul; 66(6):781-793. PubMed ID: 35088072 [TBL] [Abstract][Full Text] [Related]
5. Direct-on-Filter α-Quartz Estimation in Respirable Coal Mine Dust Using Transmission Fourier Transform Infrared Spectrometry and Partial Least Squares Regression. Miller AL; Weakley AT; Griffiths PR; Cauda EG; Bayman S Appl Spectrosc; 2017 May; 71(5):1014-1024. PubMed ID: 27645724 [TBL] [Abstract][Full Text] [Related]
6. Implementing infrared determination of quartz particulates on novel filters for a prototype dust monitor. Tuchman DP; Volkwein JC; Vinson RP J Environ Monit; 2008 May; 10(5):671-8. PubMed ID: 18449405 [TBL] [Abstract][Full Text] [Related]
7. Application of end-of-shift respirable crystalline silica monitoring to construction. Chien CH; Huang G; Lopez B; Morea A; Sing SY; Wu CY; Kashon ML; Harper M J Occup Environ Hyg; 2020 Sep; 17(9):416-425. PubMed ID: 32749920 [TBL] [Abstract][Full Text] [Related]
8. Evaluating portable infrared spectrometers for measuring the silica content of coal dust. Miller AL; Drake PL; Murphy NC; Noll JD; Volkwein JC J Environ Monit; 2012 Jan; 14(1):48-55. PubMed ID: 22130611 [TBL] [Abstract][Full Text] [Related]
9. Quantifying silica in filter-deposited mine dusts using infrared spectra and partial least squares regression. Weakley AT; Miller AL; Griffiths PR; Bayman SJ Anal Bioanal Chem; 2014 Jul; 406(19):4715-24. PubMed ID: 24830397 [TBL] [Abstract][Full Text] [Related]
10. Respirable coal mine dust at surface mines, United States, 1982-2017. Doney BC; Blackley D; Hale JM; Halldin C; Kurth L; Syamlal G; Laney AS Am J Ind Med; 2020 Mar; 63(3):232-239. PubMed ID: 31820465 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of PVC and PTFE filters for direct-on-filter crystalline silica quantification by FTIR. Osho B; Elahifard M; Wang X; Abbasi B; Chow JC; Watson JG; Arnott WP; Reed WR; Parks D J Occup Environ Hyg; 2024 Aug; 21(8):539-550. PubMed ID: 38958555 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of laser-induced breakdown spectroscopy (LIBS) for measurement of silica on filter samples of coal dust. Stipe CB; Miller AL; Brown J; Guevara E; Cauda E Appl Spectrosc; 2012 Nov; 66(11):1286-93. PubMed ID: 23146184 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of the approach to respirable quartz exposure control in U.S. coal mines. Joy GJ J Occup Environ Hyg; 2012; 9(2):65-8. PubMed ID: 22181563 [TBL] [Abstract][Full Text] [Related]
14. Respirable dust exposures in U.S. surface coal mines (1982-1986). Piacitelli GM; Amandus HE; Dieffenbach A Arch Environ Health; 1990; 45(4):202-9. PubMed ID: 2169228 [TBL] [Abstract][Full Text] [Related]
15. A Novel Calibration Method for the Quantification of Respirable Particles in Mining Scenarios Using Fourier Transform Infrared Spectroscopy. Stach R; Barone T; Cauda E; Mizaikoff B Appl Spectrosc; 2021 Mar; 75(3):307-316. PubMed ID: 33031006 [TBL] [Abstract][Full Text] [Related]
16. Equivalency of a personal dust monitor to the current United States coal mine respirable dust sampler. Page SJ; Volkwein JC; Vinson RP; Joy GJ; Mischler SE; Tuchman DP; McWilliams LJ J Environ Monit; 2008 Jan; 10(1):96-101. PubMed ID: 18175022 [TBL] [Abstract][Full Text] [Related]
17. Comparison of the Analysis of Respirable Crystalline Silica in Workplace Air by Direct-on-Filter Methods using X-ray Diffraction and Fourier Transform Infrared Spectroscopy. Ichikawa A; Volpato J; O'Donnell GE; Mazereeuw M Ann Work Expo Health; 2022 Jun; 66(5):632-643. PubMed ID: 34718400 [TBL] [Abstract][Full Text] [Related]
18. Quartz in coal dust deposited on internal surface of respirable size selective samplers. Soo JC; Lee T; Kashon M; Kusti M; Harper M J Occup Environ Hyg; 2014; 11(12):D215-9. PubMed ID: 25204985 [TBL] [Abstract][Full Text] [Related]
19. Dust exposures at U.S. surface coal mines in 1982-1983. Amandus HE; Piacitelli G Arch Environ Health; 1987; 42(6):374-81. PubMed ID: 3439816 [TBL] [Abstract][Full Text] [Related]
20. Quartz measurement in coal dust with high-flow rate samplers: laboratory study. Lee T; Lee EG; Kim SW; Chisholm WP; Kashon M; Harper M Ann Occup Hyg; 2012 May; 56(4):413-25. PubMed ID: 22186376 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]