These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 25636230)
1. Comparison of modification sites in glycated crystallin in vitro and in vivo. Kielmas M; Kijewska M; Kluczyk A; Oficjalska J; Gołębiewska B; Stefanowicz P; Szewczuk Z Anal Bioanal Chem; 2015 Mar; 407(9):2557-67. PubMed ID: 25636230 [TBL] [Abstract][Full Text] [Related]
2. Gamma III-crystallin is the primary target of glycation in the bovine lens incubated under physiological conditions. Yan H; Willis AC; Harding JJ Biochem J; 2003 Sep; 374(Pt 3):677-85. PubMed ID: 12803541 [TBL] [Abstract][Full Text] [Related]
3. In vivo glycation of bovine lens crystallins. Van Boekel MA; Hoenders HJ Biochim Biophys Acta; 1992 Sep; 1159(1):99-102. PubMed ID: 1390916 [TBL] [Abstract][Full Text] [Related]
4. Succinylation Is a Gain-of-Function Modification in Human Lens αB-Crystallin. Nandi SK; Rakete S; Nahomi RB; Michel C; Dunbar A; Fritz KS; Nagaraj RH Biochemistry; 2019 Mar; 58(9):1260-1274. PubMed ID: 30758948 [TBL] [Abstract][Full Text] [Related]
5. A spectroscopic study of glycated bovine alpha-crystallin: investigation of flexibility of the C-terminal extension, chaperone activity and evidence for diglycation. Blakytny R; Carver JA; Harding JJ; Kilby GW; Sheil MM Biochim Biophys Acta; 1997 Dec; 1343(2):299-315. PubMed ID: 9434120 [TBL] [Abstract][Full Text] [Related]
6. Identification of in vivo phosphorylation sites of lens proteins from porcine eye lenses by a gel-free phosphoproteomics approach. Chiou SH; Huang CH; Lee IL; Wang YT; Liu NY; Tsay YG; Chen YJ Mol Vis; 2010 Feb; 16():294-302. PubMed ID: 20182557 [TBL] [Abstract][Full Text] [Related]
7. Role of the specifically targeted lysine residues in the glycation dependent loss of chaperone activity of alpha A- and alpha B-crystallins. Abraham EC; Huaqian J; Aziz A; Kumarasamy A; Datta P Mol Cell Biochem; 2008 Mar; 310(1-2):235-9. PubMed ID: 18158587 [TBL] [Abstract][Full Text] [Related]
8. Carnosine disaggregates glycated alpha-crystallin: an in vitro study. Seidler NW; Yeargans GS; Morgan TG Arch Biochem Biophys; 2004 Jul; 427(1):110-5. PubMed ID: 15178493 [TBL] [Abstract][Full Text] [Related]
9. LC-MS display of the total modified amino acids in cataract lens proteins and in lens proteins glycated by ascorbic acid in vitro. Cheng R; Feng Q; Ortwerth BJ Biochim Biophys Acta; 2006 May; 1762(5):533-43. PubMed ID: 16540295 [TBL] [Abstract][Full Text] [Related]
10. A rapid, comprehensive liquid chromatography-mass spectrometry (LC-MS)-based survey of the Asp isomers in crystallins from human cataract lenses. Fujii N; Sakaue H; Sasaki H; Fujii N J Biol Chem; 2012 Nov; 287(47):39992-40002. PubMed ID: 23007399 [TBL] [Abstract][Full Text] [Related]
11. Sites of glycation of beta B2-crystallin by glucose and fructose. Zhao HR; Smith JB; Jiang XY; Abraham EC Biochem Biophys Res Commun; 1996 Dec; 229(1):128-33. PubMed ID: 8954094 [TBL] [Abstract][Full Text] [Related]
12. Role of glycine 1 and lysine 2 in the glycation of bovine gamma B-crystallin. Site-directed mutagenesis of lysine to threonine. Casey EB; Zhao HR; Abraham EC J Biol Chem; 1995 Sep; 270(35):20781-6. PubMed ID: 7657661 [TBL] [Abstract][Full Text] [Related]
13. Identification of Isomeric Aspartate residues in βB2-crystallin from Aged Human Lens. Takata T; Murakami K; Toyama A; Fujii N Biochim Biophys Acta Proteins Proteom; 2018 Jul; 1866(7):767-774. PubMed ID: 29654977 [TBL] [Abstract][Full Text] [Related]
14. Effects of modifications of alpha-crystallin on its chaperone and other properties. Derham BK; Harding JJ Biochem J; 2002 Jun; 364(Pt 3):711-7. PubMed ID: 12049635 [TBL] [Abstract][Full Text] [Related]
15. In vivo carbamylation and acetylation of water-soluble human lens alphaB-crystallin lysine 92. Lapko VN; Smith DL; Smith JB Protein Sci; 2001 Jun; 10(6):1130-6. PubMed ID: 11369851 [TBL] [Abstract][Full Text] [Related]
16. In vivo modification of the C-terminal lysine of human lens alphaB-crystallin. Lin P; Smith DL; Smith JB Exp Eye Res; 1997 Nov; 65(5):673-80. PubMed ID: 9367647 [TBL] [Abstract][Full Text] [Related]
17. Development of a selective and sensitive analytical method to detect isomerized aspartic acid residues in crystallin using a combination of derivatization and liquid chromatography mass spectrometry. Mizuno H; Shindo T; Ito K; Sakane I; Miyazaki Y; Toyo'oka T; Todoroki K J Chromatogr A; 2020 Jul; 1623():461134. PubMed ID: 32345439 [TBL] [Abstract][Full Text] [Related]
18. Assessment of structure, stability and aggregation of soluble lens proteins and alpha-crystallin upon non-enzymatic glycation: The pathomechanisms underlying cataract development in diabetic patients. Yousefi R; Javadi S; Amirghofran S; Oryan A; Moosavi-Movahedi AA Int J Biol Macromol; 2016 Jan; 82():328-38. PubMed ID: 26478093 [TBL] [Abstract][Full Text] [Related]
19. In vivo acetylation identified at lysine 70 of human lens alphaA-crystallin. Lin PP; Barry RC; Smith DL; Smith JB Protein Sci; 1998 Jun; 7(6):1451-7. PubMed ID: 9655350 [TBL] [Abstract][Full Text] [Related]
20. Crystallin composition of human cataractous lens may be modulated by protein glycation. Ramalho J; Marques C; Pereira P; Mota MC Graefes Arch Clin Exp Ophthalmol; 1996 Aug; 234 Suppl 1():S232-8. PubMed ID: 8871180 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]