BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 25636313)

  • 1. The transcriptional stress response of Candida albicans to weak organic acids.
    Cottier F; Tan AS; Chen J; Lum J; Zolezzi F; Poidinger M; Pavelka N
    G3 (Bethesda); 2015 Jan; 5(4):497-505. PubMed ID: 25636313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Transcriptional Response of
    Cottier F; Tan ASM; Yurieva M; Liao W; Lum J; Poidinger M; Zolezzi F; Pavelka N
    G3 (Bethesda); 2017 Nov; 7(11):3597-3604. PubMed ID: 28877970
    [No Abstract]   [Full Text] [Related]  

  • 3. MIG1 Regulates Resistance of Candida albicans against the Fungistatic Effect of Weak Organic Acids.
    Cottier F; Tan AS; Xu X; Wang Y; Pavelka N
    Eukaryot Cell; 2015 Oct; 14(10):1054-61. PubMed ID: 26297702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA Enrichment Method for Quantitative Transcriptional Analysis of Pathogens In Vivo Applied to the Fungus Candida albicans.
    Amorim-Vaz S; Tran Vdu T; Pradervand S; Pagni M; Coste AT; Sanglard D
    mBio; 2015 Sep; 6(5):e00942-15. PubMed ID: 26396240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide expression profiling of the response to terbinafine in Candida albicans using a cDNA microarray analysis.
    Zeng YB; Qian YS; Ma L; Gu HN
    Chin Med J (Engl); 2007 May; 120(9):807-13. PubMed ID: 17531123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of Candida albicans morphogenesis by fatty acid metabolites.
    Noverr MC; Huffnagle GB
    Infect Immun; 2004 Nov; 72(11):6206-10. PubMed ID: 15501745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The transcriptome of Candida albicans mitochondria and the evolution of organellar transcription units in yeasts.
    Kolondra A; Labedzka-Dmoch K; Wenda JM; Drzewicka K; Golik P
    BMC Genomics; 2015 Oct; 16():827. PubMed ID: 26487099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen accessibility and iron levels are critical factors for the antifungal action of ciclopirox against Candida albicans.
    Sigle HC; Thewes S; Niewerth M; Korting HC; Schäfer-Korting M; Hube B
    J Antimicrob Chemother; 2005 May; 55(5):663-73. PubMed ID: 15790671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional Profiling of Candida albicans in the Host.
    Gunsalus KT; Kumamoto CA
    Methods Mol Biol; 2016; 1356():17-29. PubMed ID: 26519062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide expression profiling of the response to ciclopirox olamine in Candida albicans.
    Lee RE; Liu TT; Barker KS; Lee RE; Rogers PD
    J Antimicrob Chemother; 2005 May; 55(5):655-62. PubMed ID: 15814599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of RPS41 but not its paralog RPS42 results in altered growth, filamentation and transcriptome changes in Candida albicans.
    Lu H; Yao XW; Whiteway M; Xiong J; Liao ZB; Jiang YY; Cao YY
    Fungal Genet Biol; 2015 Jul; 80():31-42. PubMed ID: 25937438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p.
    Bensen ES; Martin SJ; Li M; Berman J; Davis DA
    Mol Microbiol; 2004 Dec; 54(5):1335-51. PubMed ID: 15554973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory networks affected by iron availability in Candida albicans.
    Lan CY; Rodarte G; Murillo LA; Jones T; Davis RW; Dungan J; Newport G; Agabian N
    Mol Microbiol; 2004 Sep; 53(5):1451-69. PubMed ID: 15387822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome profiling of endothelial cells during infections with high and low densities of C. albicans cells.
    Lim CS; Rosli R; Seow HF; Chong PP
    Int J Med Microbiol; 2011 Aug; 301(6):536-46. PubMed ID: 21371935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of application possibility of water containing organic acids for chemical denture cleaning for older adults.
    Izumi S; Ryu M; Ueda T; Ishihara K; Sakurai K
    Geriatr Gerontol Int; 2016 Mar; 16(3):300-6. PubMed ID: 25752802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcript profiling reveals rewiring of iron assimilation gene expression in Candida albicans and C. dubliniensis.
    Moran GP
    FEMS Yeast Res; 2012 Dec; 12(8):918-23. PubMed ID: 22888912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global transcriptional profiling of Candida albicans cwt1 null mutant.
    Moreno I; Castillo L; Sentandreu R; Valentin E
    Yeast; 2007 Apr; 24(4):357-70. PubMed ID: 17238235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The disruption of JEN1 from Candida albicans impairs the transport of lactate.
    Soares-Silva I; Paiva S; Kötter P; Entian KD; Casal M
    Mol Membr Biol; 2004; 21(6):403-11. PubMed ID: 15764370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effects of antifungal agents on expression of genes related to formation of Candida albicans biofilms.
    Chatzimoschou A; Simitsopoulou M; Antachopoulos C; Walsh TJ; Roilides E
    Mycoses; 2016 Jan; 59(1):43-7. PubMed ID: 26593284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenotypic screening, transcriptional profiling, and comparative genomic analysis of an invasive and non-invasive strain of Candida albicans.
    Thewes S; Moran GP; Magee BB; Schaller M; Sullivan DJ; Hube B
    BMC Microbiol; 2008 Oct; 8():187. PubMed ID: 18950481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.