BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 25636351)

  • 1. Predicting environmental concentrations of nanomaterials for exposure assessment - a review.
    Keller AA; Zheng Y; Praetorius A; Quik JTK; Nowack B
    NanoImpact; 2024 Jan; 33():100496. PubMed ID: 38266914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inventory of Engineered Nanoparticle-Containing Consumer Products Available in the Singapore Retail Market and Likelihood of Release into the Aquatic Environment.
    Zhang Y; Leu YR; Aitken RJ; Riediker M
    Int J Environ Res Public Health; 2015 Jul; 12(8):8717-43. PubMed ID: 26213957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statuses, shortcomings, and outlooks in studying the fate of nanoplastics and engineered nanoparticles in porous media respectively and borrowable sections from engineered nanoparticles for nanoplastics.
    Zhang M; Hou J; Xia J; Wu J; You G; Miao L
    Sci Total Environ; 2024 Mar; 915():169638. PubMed ID: 38181944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of natural processes and surface energy of inhaled engineered nanoparticles on aggregation and corona formation.
    Tsuda A; Venkata NK
    NanoImpact; 2016 Apr; 2():38-44. PubMed ID: 29202111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insight interactions of engineered nanoparticles with aquatic higher plants for phytoaccumulation, phytotoxicity, and phytoremediation applications: A review.
    Sukul U; Das K; Chen JS; Sharma RK; Dey G; Banerjee P; Taharia M; Lee CI; Maity JP; Lin PY; Chen CY
    Aquat Toxicol; 2023 Nov; 264():106713. PubMed ID: 37866164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered nanoparticles induce cell apoptosis: potential for cancer therapy.
    Ma DD; Yang WX
    Oncotarget; 2016 Jun; 7(26):40882-40903. PubMed ID: 27056889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-Time Nanoparticle-Cell Interactions in Physiological Media by Atomic Force Microscopy.
    Pyrgiotakis G; Blattmann CO; Demokritou P
    ACS Sustain Chem Eng; 2014 Jul; 2(7):1681-1690. PubMed ID: 25068097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single entity collision for inorganic water pollutants measurements: Insights and prospects.
    Lu Y; Ma T; Lan Q; Liu B; Liang X
    Water Res; 2024 Jan; 248():120874. PubMed ID: 37979571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling framework for simulating concentrations of solute chemicals, nanoparticles, and solids in surface waters and sediments: WASP8 Advanced Toxicant Module.
    Knightes CD; Ambrose RB; Avant B; Han Y; Acrey B; Bouchard DC; Zepp R; Wool T
    Environ Model Softw; 2019; 111():444-458. PubMed ID: 31297031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quasi-instantaneous materials processing technology via high-intensity electrical nano pulsing.
    Olevsky EA; Jiang R; Xu W; Maximenko A; Grippi T; Torresani E
    Sci Rep; 2024 Jan; 14(1):434. PubMed ID: 38172158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracerebral fate of engineered nanoparticles.
    Nance E
    Nat Nanotechnol; 2024 Mar; 19(3):273-274. PubMed ID: 38158437
    [No Abstract]   [Full Text] [Related]  

  • 12. Anomalous Gold Concentrations in Hypersaline Wetland Sediments (Laguna Honda, South Spain) Caused by Nanoparticles Used in Agricultural Practices: Environmental Transformation.
    Medina-Ruiz A; Jiménez-Millán J; Abad I; Jiménez-Espinosa R
    Toxics; 2024 Mar; 12(3):. PubMed ID: 38535956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Review on the Environmental Fate Models for Predicting the Distribution of Engineered Nanomaterials in Surface Waters.
    Suhendra E; Chang CH; Hou WC; Hsieh YC
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32604975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of past research on the design of experiments with dissolved organic matter and engineered nanoparticles.
    Sani-Kast N; Ollivier P; Slomberg D; Labille J; Hungerbühler K; Scheringer M
    PLoS One; 2018; 13(5):e0196549. PubMed ID: 29734351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Risks, Release and Concentrations of Engineered Nanomaterial in the Environment.
    Giese B; Klaessig F; Park B; Kaegi R; Steinfeldt M; Wigger H; von Gleich A; Gottschalk F
    Sci Rep; 2018 Jan; 8(1):1565. PubMed ID: 29371617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Addressing the complexity of water chemistry in environmental fate modeling for engineered nanoparticles.
    Sani-Kast N; Scheringer M; Slomberg D; Labille J; Praetorius A; Ollivier P; Hungerbühler K
    Sci Total Environ; 2015 Dec; 535():150-9. PubMed ID: 25636351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of environmental fate models for engineered nanoparticles--a case study of TiO2 nanoparticles in the Rhine River.
    Praetorius A; Scheringer M; Hungerbühler K
    Environ Sci Technol; 2012 Jun; 46(12):6705-13. PubMed ID: 22502632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental exposure assessment of engineered nanoparticles: why REACH needs adjustment.
    Meesters JA; Veltman K; Hendriks AJ; van de Meent D
    Integr Environ Assess Manag; 2013 Jul; 9(3):e15-26. PubMed ID: 23633247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simplifying modeling of nanoparticle aggregation-sedimentation behavior in environmental systems: a theoretical analysis.
    Quik JT; van De Meent D; Koelmans AA
    Water Res; 2014 Oct; 62():193-201. PubMed ID: 24956601
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.