BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 25636351)

  • 21. Development of a model (SWNano) to assess the fate and transport of TiO
    Kim KE; Hwang YS; Jang MH; Song JH; Kim HS; Lee DS
    J Hazard Mater; 2019 Aug; 375():290-296. PubMed ID: 31078989
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lake retention of manufactured nanoparticles.
    Koelmans AA; Quik JT; Velzeboer I
    Environ Pollut; 2015 Jan; 196():171-5. PubMed ID: 25463711
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products.
    Mitrano DM; Motellier S; Clavaguera S; Nowack B
    Environ Int; 2015 Apr; 77():132-47. PubMed ID: 25705000
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective detection and characterization of nanoparticles from motor vehicles.
    Johnston MV; Klems JP; Zordan CA; Pennington MR; Smith JN;
    Res Rep Health Eff Inst; 2013 Feb; (173):3-45. PubMed ID: 23614271
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Release, transport and toxicity of engineered nanoparticles.
    Soni D; Naoghare PK; Saravanadevi S; Pandey RA
    Rev Environ Contam Toxicol; 2015; 234():1-47. PubMed ID: 25385512
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Origin, separation and identification of environmental nanoparticles: a review.
    Tsao TM; Chen YM; Wang MK
    J Environ Monit; 2011 May; 13(5):1156-63. PubMed ID: 21505694
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Time series analysis of contaminant transport in the subsurface: applications to conservative tracer and engineered nanomaterials.
    Bai C; Li Y
    J Contam Hydrol; 2014 Aug; 164():153-62. PubMed ID: 24987973
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Review: Do engineered nanoparticles pose a significant threat to the aquatic environment?
    Scown TM; van Aerle R; Tyler CR
    Crit Rev Toxicol; 2010 Aug; 40(7):653-70. PubMed ID: 20662713
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements.
    Kelly F; Anderson HR; Armstrong B; Atkinson R; Barratt B; Beevers S; Derwent D; Green D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Apr; (155):5-71. PubMed ID: 21830496
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fate assessment of engineered nanoparticles in solids dominated media - Current insights and the way forward.
    Peijnenburg W; Praetorius A; Scott-Fordsmand J; Cornelis G
    Environ Pollut; 2016 Nov; 218():1365-1369. PubMed ID: 26794339
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Migration of Ag- and TiO2-(Nano)particles from textiles into artificial sweat under physical stress: experiments and exposure modeling.
    von Goetz N; Lorenz C; Windler L; Nowack B; Heuberger M; Hungerbühler K
    Environ Sci Technol; 2013 Sep; 47(17):9979-87. PubMed ID: 23786648
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling aggregation and sedimentation of nanoparticles in the aquatic environment.
    Markus AA; Parsons JR; Roex EW; de Voogt P; Laane RW
    Sci Total Environ; 2015 Feb; 506-507():323-9. PubMed ID: 25460966
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physicochemical characterization of engineered nanoparticles under physiological conditions: effect of culture media components and particle surface coating.
    Fatisson J; Quevedo IR; Wilkinson KJ; Tufenkji N
    Colloids Surf B Biointerfaces; 2012 Mar; 91():198-204. PubMed ID: 22119565
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multimedia fate modeling and risk assessment of a commonly used azole fungicide climbazole at the river basin scale in China.
    Zhang QQ; Ying GG; Chen ZF; Liu YS; Liu WR; Zhao JL
    Sci Total Environ; 2015 Jul; 520():39-48. PubMed ID: 25794970
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: A review.
    Abbas Q; Yousaf B; Amina ; Ali MU; Munir MAM; El-Naggar A; Rinklebe J; Naushad M
    Environ Int; 2020 May; 138():105646. PubMed ID: 32179325
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Setting the limits for engineered nanoparticles in European surface waters - are current approaches appropriate?
    Baun A; Hartmann NB; Grieger KD; Hansen SF
    J Environ Monit; 2009 Oct; 11(10):1774-81. PubMed ID: 19809700
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Occurrence, behavior and effects of nanoparticles in the environment.
    Nowack B; Bucheli TD
    Environ Pollut; 2007 Nov; 150(1):5-22. PubMed ID: 17658673
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection and quantification of engineered particles in urban runoff.
    Wang J; Nabi MM; Mohanty SK; Afrooz AN; Cantando E; Aich N; Baalousha M
    Chemosphere; 2020 Jun; 248():126070. PubMed ID: 32028165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.