BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 25636351)

  • 41. Challenges in assessing release, exposure and fate of silver nanoparticles within the UK environment.
    Whiteley CM; Dalla Valle M; Jones KC; Sweetman AJ
    Environ Sci Process Impacts; 2013 Oct; 15(11):2050-8. PubMed ID: 24056694
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Review on the Environmental Fate Models for Predicting the Distribution of Engineered Nanomaterials in Surface Waters.
    Suhendra E; Chang CH; Hou WC; Hsieh YC
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32604975
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Deposition of engineered nanoparticles (ENPs) on surfaces in aquatic systems: a review of interaction forces, experimental approaches, and influencing factors.
    Ma C; Huangfu X; He Q; Ma J; Huang R
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):33056-33081. PubMed ID: 30267342
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of electrolyte valency, alginate concentration and pH on engineered TiO₂ nanoparticle stability in aqueous solution.
    Loosli F; Le Coustumer P; Stoll S
    Sci Total Environ; 2015 Dec; 535():28-34. PubMed ID: 25726181
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Monitoring characteristics and genotoxic effects of engineered nanoparticle-protein corona.
    Senapati VA; Kansara K; Shanker R; Dhawan A; Kumar A
    Mutagenesis; 2017 Oct; 32(5):479-490. PubMed ID: 29048576
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Calculation of environmental concentration and comparison of output for existing chemicals using regional multimedia modeling.
    Kawamoto K; Park KA
    Chemosphere; 2006 May; 63(7):1154-64. PubMed ID: 16289227
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Part 1. Statistical Learning Methods for the Effects of Multiple Air Pollution Constituents.
    Coull BA; Bobb JF; Wellenius GA; Kioumourtzoglou MA; Mittleman MA; Koutrakis P; Godleski JJ
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):5-50. PubMed ID: 26333238
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modelling the fate of nitrite in an urbanized river using experimentally obtained nitrifier growth parameters.
    Raimonet M; Vilmin L; Flipo N; Rocher V; Laverman AM
    Water Res; 2015 Apr; 73():373-87. PubMed ID: 25704156
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fate and risks of nanomaterials in aquatic and terrestrial environments.
    Batley GE; Kirby JK; McLaughlin MJ
    Acc Chem Res; 2013 Mar; 46(3):854-62. PubMed ID: 22759090
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Exposure to engineered nanoparticles: Model and measurements for accident situations in laboratories.
    Walser T; Hellweg S; Juraske R; Luechinger NA; Wang J; Fierz M
    Sci Total Environ; 2012 Mar; 420():119-26. PubMed ID: 22326315
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rapid settling of nanoparticles due to heteroaggregation with suspended sediment.
    Velzeboer I; Quik JT; van de Meent D; Koelmans AA
    Environ Toxicol Chem; 2014 Aug; 33(8):1766-73. PubMed ID: 24753080
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nanopesticides: guiding principles for regulatory evaluation of environmental risks.
    Kookana RS; Boxall AB; Reeves PT; Ashauer R; Beulke S; Chaudhry Q; Cornelis G; Fernandes TF; Gan J; Kah M; Lynch I; Ranville J; Sinclair C; Spurgeon D; Tiede K; Van den Brink PJ
    J Agric Food Chem; 2014 May; 62(19):4227-40. PubMed ID: 24754346
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modeling the transport and retention of nC60 nanoparticles in the subsurface under different release scenarios.
    Bai C; Li Y
    J Contam Hydrol; 2012 Aug; 136-137():43-55. PubMed ID: 22683828
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Saltwater ecotoxicology of Ag, Au, CuO, TiO2, ZnO and C60 engineered nanoparticles: An overview.
    Minetto D; Volpi Ghirardini A; Libralato G
    Environ Int; 2016; 92-93():189-201. PubMed ID: 27107224
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Visualization and characterization of engineered nanoparticles in complex environmental and food matrices using atmospheric scanning electron microscopy.
    Luo P; Morrison I; Dudkiewicz A; Tiede K; Boyes E; O'Toole P; Park S; Boxall AB
    J Microsc; 2013 Apr; 250(1):32-41. PubMed ID: 23410110
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neutron activation of engineered nanoparticles as a tool for tracing their environmental fate and uptake in organisms.
    Oughton DH; Hertel-Aas T; Pellicer E; Mendoza E; Joner EJ
    Environ Toxicol Chem; 2008 Sep; 27(9):1883-7. PubMed ID: 19086315
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of particle agglomeration in nanotoxicology.
    Bruinink A; Wang J; Wick P
    Arch Toxicol; 2015 May; 89(5):659-75. PubMed ID: 25618546
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multimedia modeling of the fate of triclosan and triclocarban in the Dongjiang River Basin, South China and comparison with field data.
    Zhang QQ; Zhao JL; Liu YS; Li BG; Ying GG
    Environ Sci Process Impacts; 2013 Oct; 15(11):2142-52. PubMed ID: 24121820
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Accumulation and toxicity of metal oxide nanoparticles in a soft-sediment estuarine amphipod.
    Hanna SK; Miller RJ; Zhou D; Keller AA; Lenihan HS
    Aquat Toxicol; 2013 Oct; 142-143():441-6. PubMed ID: 24121101
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Techniques and Protocols for Dispersing Nanoparticle Powders in Aqueous Media-Is there a Rationale for Harmonization?
    Hartmann NB; Jensen KA; Baun A; Rasmussen K; Rauscher H; Tantra R; Cupi D; Gilliland D; Pianella F; Riego Sintes JM
    J Toxicol Environ Health B Crit Rev; 2015; 18(6):299-326. PubMed ID: 26397955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.