These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 25636440)

  • 1. The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil.
    Chai H; Yao J; Sun J; Zhang C; Liu W; Zhu M; Ceccanti B
    Bull Environ Contam Toxicol; 2015 Apr; 94(4):490-5. PubMed ID: 25636440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shifts in metabolic patterns of soil bacterial communities on exposure to metal engineered nanomaterials.
    Chavan S; Nadanathangam V
    Ecotoxicol Environ Saf; 2020 Feb; 189():110012. PubMed ID: 31812019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities.
    Ge Y; Schimel JP; Holden PA
    Environ Sci Technol; 2011 Feb; 45(4):1659-64. PubMed ID: 21207975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of soil properties on the toxicity of TiO₂ nanoparticles on carbon mineralization and bacterial abundance.
    Simonin M; Guyonnet JP; Martins JM; Ginot M; Richaume A
    J Hazard Mater; 2015; 283():529-35. PubMed ID: 25464292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil.
    Du W; Sun Y; Ji R; Zhu J; Wu J; Guo H
    J Environ Monit; 2011 Apr; 13(4):822-8. PubMed ID: 21267473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different responses of soil microbial metabolic activity to silver and iron oxide nanoparticles.
    He S; Feng Y; Ni J; Sun Y; Xue L; Feng Y; Yu Y; Lin X; Yang L
    Chemosphere; 2016 Mar; 147():195-202. PubMed ID: 26766356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soybean plants modify metal oxide nanoparticle effects on soil bacterial communities.
    Ge Y; Priester JH; Van De Werfhorst LC; Walker SL; Nisbet RM; An YJ; Schimel JP; Gardea-Torresdey JL; Holden PA
    Environ Sci Technol; 2014 Nov; 48(22):13489-96. PubMed ID: 25354168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soil microbial community responses to contamination with silver, aluminium oxide and silicon dioxide nanoparticles.
    McGee CF; Storey S; Clipson N; Doyle E
    Ecotoxicology; 2017 Apr; 26(3):449-458. PubMed ID: 28197855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of TiO
    Zhou Q; Zhang X; Wu Z
    J Agric Food Chem; 2020 Oct; 68(40):11242-11252. PubMed ID: 32936624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of soil bacterial community to metal nanoparticles in biosolids.
    Shah V; Jones J; Dickman J; Greenman S
    J Hazard Mater; 2014 Jun; 274():399-403. PubMed ID: 24801897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soil pH effects on the toxicity of zinc oxide nanoparticles to soil microbial community.
    García-Gómez C; Fernández MD; García S; Obrador AF; Letón M; Babín M
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):28140-28152. PubMed ID: 30069782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent insights into the impact, fate and transport of cerium oxide nanoparticles in the plant-soil continuum.
    Prakash V; Peralta-Videa J; Tripathi DK; Ma X; Sharma S
    Ecotoxicol Environ Saf; 2021 Sep; 221():112403. PubMed ID: 34147863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of exposure dynamics of metal-based nano-ZnO, -Cu and -Pb governing the metabolic potential of soil bacterial communities.
    Zhai Y; Hunting ER; Wouterse M; Peijnenburg WJGM; Vijver MG
    Ecotoxicol Environ Saf; 2017 Nov; 145():349-358. PubMed ID: 28759764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of CeO
    Ren Y; Wang G; Su Y; Li J; Zhang H; Ma G; Han J
    Ecotoxicol Environ Saf; 2024 Jul; 280():116552. PubMed ID: 38850694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nanotechnology among US: are metal and metal oxides nanoparticles a nano or mega risk for soil microbial communities?
    Parada J; Rubilar O; Fernández-Baldo MA; Bertolino FA; Durán N; Seabra AB; Tortella GR
    Crit Rev Biotechnol; 2019 Mar; 39(2):157-172. PubMed ID: 30396282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein adsorption of ultrafine metal oxide and its influence on cytotoxicity toward cultured cells.
    Horie M; Nishio K; Fujita K; Endoh S; Miyauchi A; Saito Y; Iwahashi H; Yamamoto K; Murayama H; Nakano H; Nanashima N; Niki E; Yoshida Y
    Chem Res Toxicol; 2009 Mar; 22(3):543-53. PubMed ID: 19216582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi.
    Ameen F; Alsamhary K; Alabdullatif JA; ALNadhari S
    Ecotoxicol Environ Saf; 2021 Apr; 213():112027. PubMed ID: 33578100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute and reproductive toxicity of nano-sized metal oxides (ZnO and TiO₂) to earthworms (Eisenia fetida).
    Cañas JE; Qi B; Li S; Maul JD; Cox SB; Das S; Green MJ
    J Environ Monit; 2011 Dec; 13(12):3351-7. PubMed ID: 22020256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of soil type and environmental conditions on ZnO, TiO(2) and Ni nanoparticles phytotoxicity.
    Jośko I; Oleszczuk P
    Chemosphere; 2013 Jun; 92(1):91-9. PubMed ID: 23541360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genotoxic and cytotoxic effects of ZnO nanoparticles for Dunaliella tertiolecta and comparison with SiO2 and TiO2 effects at population growth inhibition levels.
    Schiavo S; Oliviero M; Miglietta M; Rametta G; Manzo S
    Sci Total Environ; 2016 Apr; 550():619-627. PubMed ID: 26849326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.