These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25636621)

  • 21. The recognition and prediction of sigma70 promoters in Escherichia coli K-12.
    Li QZ; Lin H
    J Theor Biol; 2006 Sep; 242(1):135-41. PubMed ID: 16603195
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gene essentiality analysis based on DEG, a database of essential genes.
    Zhang CT; Zhang R
    Methods Mol Biol; 2008; 416():391-400. PubMed ID: 18392983
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mapping of orthologous genes in the context of biological pathways: An application of integer programming.
    Mao F; Su Z; Olman V; Dam P; Liu Z; Xu Y
    Proc Natl Acad Sci U S A; 2006 Jan; 103(1):129-34. PubMed ID: 16373500
    [TBL] [Abstract][Full Text] [Related]  

  • 24. GeneViTo: visualizing gene-product functional and structural features in genomic datasets.
    Vernikos GS; Gkogkas CG; Promponas VJ; Hamodrakas SJ
    BMC Bioinformatics; 2003 Oct; 4():53. PubMed ID: 14594459
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Virtual Footprint and PRODORIC: an integrative framework for regulon prediction in prokaryotes.
    Münch R; Hiller K; Grote A; Scheer M; Klein J; Schobert M; Jahn D
    Bioinformatics; 2005 Nov; 21(22):4187-9. PubMed ID: 16109747
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting essential genes in prokaryotic genomes using a linear method: ZUPLS.
    Song K; Tong T; Wu F
    Integr Biol (Camb); 2014 Apr; 6(4):460-9. PubMed ID: 24603751
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting essential genes based on network and sequence analysis.
    Hwang YC; Lin CC; Chang JY; Mori H; Juan HF; Huang HC
    Mol Biosyst; 2009 Dec; 5(12):1672-8. PubMed ID: 19452048
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting conserved essential genes in bacteria: in silico identification of putative drug targets.
    Duffield M; Cooper I; McAlister E; Bayliss M; Ford D; Oyston P
    Mol Biosyst; 2010 Dec; 6(12):2482-9. PubMed ID: 20949199
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An integrated machine-learning model to predict prokaryotic essential genes.
    Deng J
    Methods Mol Biol; 2015; 1279():137-51. PubMed ID: 25636617
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses.
    Besemer J; Borodovsky M
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W451-4. PubMed ID: 15980510
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes.
    Zhang R; Lin Y
    Nucleic Acids Res; 2009 Jan; 37(Database issue):D455-8. PubMed ID: 18974178
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative analysis of intronless genes in teleost fish genomes: insights into their evolution and molecular function.
    Tine M; Kuhl H; Beck A; Bargelloni L; Reinhardt R
    Mar Genomics; 2011 Jun; 4(2):109-19. PubMed ID: 21620332
    [TBL] [Abstract][Full Text] [Related]  

  • 33. YACOP: Enhanced gene prediction obtained by a combination of existing methods.
    Tech M; Merkl R
    In Silico Biol; 2003; 3(4):441-51. PubMed ID: 14965344
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A database of phylogenetically atypical genes in archaeal and bacterial genomes, identified using the DarkHorse algorithm.
    Podell S; Gaasterland T; Allen EE
    BMC Bioinformatics; 2008 Oct; 9():419. PubMed ID: 18840280
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A procedure for assessing GO annotation consistency.
    Dolan ME; Ni L; Camon E; Blake JA
    Bioinformatics; 2005 Jun; 21 Suppl 1():i136-43. PubMed ID: 15961450
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The applications of systematic in-frame, single-gene knockout mutant collection of Escherichia coli K-12.
    Baba T; Huan HC; Datsenko K; Wanner BL; Mori H
    Methods Mol Biol; 2008; 416():183-94. PubMed ID: 18392968
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ArrayOme: a program for estimating the sizes of microarray-visualized bacterial genomes.
    Ou HY; Smith R; Lucchini S; Hinton J; Chaudhuri RR; Pallen M; Barer MR; Rajakumar K
    Nucleic Acids Res; 2005 Jan; 33(1):e3. PubMed ID: 15640440
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical methods for identifying important functional genes in bacterial genomes.
    Gao J; Chen LL
    Res Microbiol; 2010; 161(1):1-8. PubMed ID: 19900539
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gene orthology assessment with OrthologID.
    Egan M; Lee EK; Chiu JC; Coruzzi G; Desalle R
    Methods Mol Biol; 2009; 537():23-38. PubMed ID: 19378138
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Origins and impact of constraints in evolution of gene families.
    Shakhnovich BE; Koonin EV
    Genome Res; 2006 Dec; 16(12):1529-36. PubMed ID: 17053091
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.