BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

894 related articles for article (PubMed ID: 25636838)

  • 21. Protein engineering of Cas9 for enhanced function.
    Oakes BL; Nadler DC; Savage DF
    Methods Enzymol; 2014; 546():491-511. PubMed ID: 25398355
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The CRISPR-Cas system in Enterobacteriaceae.
    Medina-Aparicio L; Dávila S; Rebollar-Flores JE; Calva E; Hernández-Lucas I
    Pathog Dis; 2018 Feb; 76(1):. PubMed ID: 29325038
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR-Cas9 as a Powerful Tool for Efficient Creation of Oncolytic Viruses.
    Yuan M; Webb E; Lemoine NR; Wang Y
    Viruses; 2016 Mar; 8(3):72. PubMed ID: 26959050
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-Stranded DNA Cleavage by Divergent CRISPR-Cas9 Enzymes.
    Ma E; Harrington LB; O'Connell MR; Zhou K; Doudna JA
    Mol Cell; 2015 Nov; 60(3):398-407. PubMed ID: 26545076
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Precise Genome Editing of Drosophila with CRISPR RNA-Guided Cas9.
    Gratz SJ; Harrison MM; Wildonger J; O'Connor-Giles KM
    Methods Mol Biol; 2015; 1311():335-48. PubMed ID: 25981484
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment.
    Kennedy EM; Cullen BR
    Virology; 2015 May; 479-480():213-20. PubMed ID: 25759096
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient Genome Editing of a Facultative Thermophile Using Mesophilic spCas9.
    Mougiakos I; Bosma EF; Weenink K; Vossen E; Goijvaerts K; van der Oost J; van Kranenburg R
    ACS Synth Biol; 2017 May; 6(5):849-861. PubMed ID: 28146359
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A simple and rapid approach to manipulate pseudorabies virus genome by CRISPR/Cas9 system.
    Xu A; Qin C; Lang Y; Wang M; Lin M; Li C; Zhang R; Tang J
    Biotechnol Lett; 2015 Jun; 37(6):1265-72. PubMed ID: 25724716
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system.
    Cobb RE; Wang Y; Zhao H
    ACS Synth Biol; 2015 Jun; 4(6):723-8. PubMed ID: 25458909
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RNA-guided genome editing in plants using a CRISPR-Cas system.
    Xie K; Yang Y
    Mol Plant; 2013 Nov; 6(6):1975-83. PubMed ID: 23956122
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9.
    Du H; Zeng X; Zhao M; Cui X; Wang Q; Yang H; Cheng H; Yu D
    J Biotechnol; 2016 Jan; 217():90-7. PubMed ID: 26603121
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation.
    Zhang H; Zhang J; Wei P; Zhang B; Gou F; Feng Z; Mao Y; Yang L; Zhang H; Xu N; Zhu JK
    Plant Biotechnol J; 2014 Aug; 12(6):797-807. PubMed ID: 24854982
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR/Cas9-Mediated Genome Editing in Soybean Hairy Roots.
    Cai Y; Chen L; Liu X; Sun S; Wu C; Jiang B; Han T; Hou W
    PLoS One; 2015; 10(8):e0136064. PubMed ID: 26284791
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus.
    Steinert J; Schiml S; Fauser F; Puchta H
    Plant J; 2015 Dec; 84(6):1295-305. PubMed ID: 26576927
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineered CRISPR-Cas9 nucleases with altered PAM specificities.
    Kleinstiver BP; Prew MS; Tsai SQ; Topkar VV; Nguyen NT; Zheng Z; Gonzales AP; Li Z; Peterson RT; Yeh JR; Aryee MJ; Joung JK
    Nature; 2015 Jul; 523(7561):481-5. PubMed ID: 26098369
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of genomic sites for CRISPR/Cas9-based genome editing in the Vitis vinifera genome.
    Wang Y; Liu X; Ren C; Zhong GY; Yang L; Li S; Liang Z
    BMC Plant Biol; 2016 Apr; 16():96. PubMed ID: 27098585
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacterial resistance to CRISPR-Cas antimicrobials.
    Uribe RV; Rathmer C; Jahn LJ; Ellabaan MMH; Li SS; Sommer MOA
    Sci Rep; 2021 Aug; 11(1):17267. PubMed ID: 34446818
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent Progress in CRISPR/Cas9 Technology.
    Mei Y; Wang Y; Chen H; Sun ZS; Ju XD
    J Genet Genomics; 2016 Feb; 43(2):63-75. PubMed ID: 26924689
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae.
    Katayama T; Tanaka Y; Okabe T; Nakamura H; Fujii W; Kitamoto K; Maruyama J
    Biotechnol Lett; 2016 Apr; 38(4):637-42. PubMed ID: 26687199
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficiency and Inheritance of Targeted Mutagenesis in Maize Using CRISPR-Cas9.
    Zhu J; Song N; Sun S; Yang W; Zhao H; Song W; Lai J
    J Genet Genomics; 2016 Jan; 43(1):25-36. PubMed ID: 26842991
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 45.