These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 25636846)

  • 1. Genome-wide transcriptional responses to carbon starvation in nongrowing Lactococcus lactis.
    Ercan O; Wels M; Smid EJ; Kleerebezem M
    Appl Environ Microbiol; 2015 Apr; 81(7):2554-61. PubMed ID: 25636846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular and metabolic adaptations of Lactococcus lactis at near-zero growth rates.
    Ercan O; Wels M; Smid EJ; Kleerebezem M
    Appl Environ Microbiol; 2015 Jan; 81(1):320-31. PubMed ID: 25344239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbohydrate starvation causes a metabolically active but nonculturable state in Lactococcus lactis.
    Ganesan B; Stuart MR; Weimer BC
    Appl Environ Microbiol; 2007 Apr; 73(8):2498-512. PubMed ID: 17293521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome analysis of the progressive adaptation of Lactococcus lactis to carbon starvation.
    Redon E; Loubiere P; Cocaign-Bousquet M
    J Bacteriol; 2005 May; 187(10):3589-92. PubMed ID: 15866950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pleiotropic transcriptional repressor CodY senses the intracellular pool of branched-chain amino acids in Lactococcus lactis.
    Guédon E; Serror P; Ehrlich SD; Renault P; Delorme C
    Mol Microbiol; 2001 Jun; 40(5):1227-39. PubMed ID: 11401725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome landscape of Lactococcus lactis reveals many novel RNAs including a small regulatory RNA involved in carbon uptake and metabolism.
    van der Meulen SB; de Jong A; Kok J
    RNA Biol; 2016; 13(3):353-66. PubMed ID: 26950529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth rate regulated genes and their wide involvement in the Lactococcus lactis stress responses.
    Dressaire C; Redon E; Milhem H; Besse P; Loubière P; Cocaign-Bousquet M
    BMC Genomics; 2008 Jul; 9():343. PubMed ID: 18644113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of alpha-ketoisovalerate decarboxylase expression in Lactococcus lactis IFPL730.
    de la Plaza M; Peláez C; Requena T
    J Mol Microbiol Biotechnol; 2009; 17(2):96-100. PubMed ID: 19033676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conservation of key elements of natural competence in Lactococcus lactis ssp.
    Wydau S; Dervyn R; Anba J; Dusko Ehrlich S; Maguin E
    FEMS Microbiol Lett; 2006 Apr; 257(1):32-42. PubMed ID: 16553829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the adaptation of Lactococcus lactis to isoleucine starvation integrating dynamic transcriptome and proteome information.
    Dressaire C; Redon E; Gitton C; Loubière P; Monnet V; Cocaign-Bousquet M
    Microb Cell Fact; 2011 Aug; 10 Suppl 1(Suppl 1):S18. PubMed ID: 21995707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GlaR (YugA)-a novel RpiR-family transcription activator of the Leloir pathway of galactose utilization in Lactococcus lactis IL1403.
    Aleksandrzak-Piekarczyk T; Szatraj K; Kosiorek K
    Microbiologyopen; 2019 May; 8(5):e00714. PubMed ID: 30099846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Lactococcus lactis CodY regulon: identification of a conserved cis-regulatory element.
    den Hengst CD; van Hijum SA; Geurts JM; Nauta A; Kok J; Kuipers OP
    J Biol Chem; 2005 Oct; 280(40):34332-42. PubMed ID: 16040604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lactococcus lactis metabolism and gene expression during growth on plant tissues.
    Golomb BL; Marco ML
    J Bacteriol; 2015 Jan; 197(2):371-81. PubMed ID: 25384484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfur amino acid metabolism and its control in Lactococcus lactis IL1403.
    Sperandio B; Polard P; Ehrlich DS; Renault P; Guédon E
    J Bacteriol; 2005 Jun; 187(11):3762-78. PubMed ID: 15901700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The riboflavin transporter RibU in Lactococcus lactis: molecular characterization of gene expression and the transport mechanism.
    Burgess CM; Slotboom DJ; Geertsma ER; Duurkens RH; Poolman B; van Sinderen D
    J Bacteriol; 2006 Apr; 188(8):2752-60. PubMed ID: 16585736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic analysis of the Lactococcus lactis transcriptome in cheeses made from milk concentrated by ultrafiltration reveals multiple strategies of adaptation to stresses.
    Cretenet M; Laroute V; Ulvé V; Jeanson S; Nouaille S; Even S; Piot M; Girbal L; Le Loir Y; Loubière P; Lortal S; Cocaign-Bousquet M
    Appl Environ Microbiol; 2011 Jan; 77(1):247-57. PubMed ID: 21075879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular effectors regulating the activity of the Lactococcus lactis CodY pleiotropic transcription regulator.
    Petranovic D; Guédon E; Sperandio B; Delorme C; Ehrlich D; Renault P
    Mol Microbiol; 2004 Jul; 53(2):613-21. PubMed ID: 15228538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new and efficient phosphate starvation inducible expression system for Lactococcus lactis.
    Sirén N; Salonen K; Leisola M; Nyyssölä A
    Appl Microbiol Biotechnol; 2008 Jul; 79(5):803-10. PubMed ID: 18431568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative physiology of Lactococcus lactis at extreme low-growth rates.
    Ercan O; Smid EJ; Kleerebezem M
    Environ Microbiol; 2013 Aug; 15(8):2319-32. PubMed ID: 23461598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overall control of nitrogen metabolism in Lactococcus lactis by CodY, and possible models for CodY regulation in Firmicutes.
    Guédon E; Sperandio B; Pons N; Ehrlich SD; Renault P
    Microbiology (Reading); 2005 Dec; 151(Pt 12):3895-3909. PubMed ID: 16339935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.