These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 25636979)
21. Bench scale microbial catalysed leaching of mobile phone PCBs with an increasing pulp density. Garg H; Nagar N; Ellamparuthy G; Angadi SI; Gahan CS Heliyon; 2019 Dec; 5(12):e02883. PubMed ID: 31872109 [TBL] [Abstract][Full Text] [Related]
22. A novel biphasic leaching approach for the recovery of Cu and Zn from polymetallic bulk concentrate. Patel BC; Sinha MK; Tipre DR; Pillai A; Dave SR Bioresour Technol; 2014 Apr; 157():310-5. PubMed ID: 24590234 [TBL] [Abstract][Full Text] [Related]
23. Study on the influence of various factors in the hydrometallurgical processing of waste printed circuit boards for copper and gold recovery. Birloaga I; De Michelis I; Ferella F; Buzatu M; Vegliò F Waste Manag; 2013 Apr; 33(4):935-41. PubMed ID: 23374398 [TBL] [Abstract][Full Text] [Related]
24. Development of Leptospirillum ferriphilum dominated consortium for ferric iron regeneration and metal bioleaching under extreme stresses. Patel BC; Tipre DR; Dave SR Bioresour Technol; 2012 Aug; 118():483-9. PubMed ID: 22717567 [TBL] [Abstract][Full Text] [Related]
25. Integrated bioleaching of copper metal from waste printed circuit board-a comprehensive review of approaches and challenges. Awasthi AK; Zeng X; Li J Environ Sci Pollut Res Int; 2016 Nov; 23(21):21141-21156. PubMed ID: 27678000 [TBL] [Abstract][Full Text] [Related]
26. Bioleaching of metals from printed circuit boards supported with surfactant-producing bacteria. Karwowska E; Andrzejewska-Morzuch D; Łebkowska M; Tabernacka A; Wojtkowska M; Telepko A; Konarzewska A J Hazard Mater; 2014 Jan; 264():203-10. PubMed ID: 24295772 [TBL] [Abstract][Full Text] [Related]
27. Monitoring bacterial community shifts in bioleaching of Ni-Cu sulfide. He Z; Zhao J; Gao F; Hu Y; Qiu G Bioresour Technol; 2010 Nov; 101(21):8287-93. PubMed ID: 20624605 [TBL] [Abstract][Full Text] [Related]
28. An advanced study on the hydrometallurgical processing of waste computer printed circuit boards to extract their valuable content of metals. Birloaga I; Coman V; Kopacek B; Vegliò F Waste Manag; 2014 Dec; 34(12):2581-6. PubMed ID: 25242605 [TBL] [Abstract][Full Text] [Related]
29. Selective separation of copper over solder alloy from waste printed circuit boards leach solution. Kavousi M; Sattari A; Alamdari EK; Firozi S Waste Manag; 2017 Feb; 60():636-642. PubMed ID: 27530081 [TBL] [Abstract][Full Text] [Related]
30. Metal bioleaching from printed circuit boards by bio-Fenton process: Optimization and prediction by response surface methodology and artificial intelligence models. Trivedi A; Hait S J Environ Manage; 2023 Jan; 326(Pt B):116797. PubMed ID: 36423410 [TBL] [Abstract][Full Text] [Related]
31. Bioleaching of copper from waste printed circuit boards by bacterial consortium enriched from acid mine drainage. Xiang Y; Wu P; Zhu N; Zhang T; Liu W; Wu J; Li P J Hazard Mater; 2010 Dec; 184(1-3):812-818. PubMed ID: 20869807 [TBL] [Abstract][Full Text] [Related]
32. Copper recovery from waste printed circuit boards using pyrite as the bioleaching substrate. Xie Z; Mahmood Q; Zhang S Environ Sci Pollut Res Int; 2024 May; 31(23):34282-34294. PubMed ID: 38698096 [TBL] [Abstract][Full Text] [Related]
33. Bioleaching of E-Waste: Influence of Printed Circuit Boards on the Activity of Acidophilic Iron-Oxidizing Bacteria. Anaya-Garzon J; Hubau A; Joulian C; Guezennec AG Front Microbiol; 2021; 12():669738. PubMed ID: 34489879 [TBL] [Abstract][Full Text] [Related]
34. Removal of Zn(II), Cu(II), Ni(II), Ag(I) and Cr(VI) present in aqueous solutions by aluminium electrocoagulation. Heidmann I; Calmano W J Hazard Mater; 2008 Apr; 152(3):934-41. PubMed ID: 17854991 [TBL] [Abstract][Full Text] [Related]
35. Removal of metals from industrial sludge by extraction with different acids. Wu CH; Kuo CY; Lo SL J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(8):2205-19. PubMed ID: 15332679 [TBL] [Abstract][Full Text] [Related]
36. Study on reaction kinetics and selective precipitation of Cu, Zn, Ni and Sn with H₂S in single-metal and multi-metal systems. Tokuda H; Kuchar D; Mihara N; Kubota M; Matsuda H; Fukuta T Chemosphere; 2008 Nov; 73(9):1448-52. PubMed ID: 18809200 [TBL] [Abstract][Full Text] [Related]
37. Behavior of zinc, nickel, copper and cadmium during the electrokinetic remediation of sediment from the Great Backa Canal (Serbia). Rajic LM; Dalmacija BD; Trickovic JS; Dalmacija MB; Krcmar DM J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Jan; 45(9):1134-43. PubMed ID: 20574868 [TBL] [Abstract][Full Text] [Related]
38. Copper recovery and gold enrichment from waste printed circuit boards by mediated electrochemical oxidation. Fogarasi S; Imre-Lucaci F; Imre-Lucaci A; Ilea P J Hazard Mater; 2014 May; 273():215-21. PubMed ID: 24747374 [TBL] [Abstract][Full Text] [Related]
39. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: experimental comparison of 11 different sorbents. Genç-Fuhrman H; Mikkelsen PS; Ledin A Water Res; 2007 Feb; 41(3):591-602. PubMed ID: 17173951 [TBL] [Abstract][Full Text] [Related]
40. Leaching behavior of copper from waste printed circuit boards with Brønsted acidic ionic liquid. Huang J; Chen M; Chen H; Chen S; Sun Q Waste Manag; 2014 Feb; 34(2):483-8. PubMed ID: 24246577 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]