BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 25637071)

  • 1. Neural mechanisms of predatory aggression in rats-implications for abnormal intraspecific aggression.
    Tulogdi A; Biro L; Barsvari B; Stankovic M; Haller J; Toth M
    Behav Brain Res; 2015 Apr; 283():108-15. PubMed ID: 25637071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain mechanisms involved in predatory aggression are activated in a laboratory model of violent intra-specific aggression.
    Tulogdi A; Toth M; Halasz J; Mikics E; Fuzesi T; Haller J
    Eur J Neurosci; 2010 Nov; 32(10):1744-53. PubMed ID: 21039962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The neural background of hyper-emotional aggression induced by post-weaning social isolation.
    Toth M; Tulogdi A; Biro L; Soros P; Mikics E; Haller J
    Behav Brain Res; 2012 Jul; 233(1):120-9. PubMed ID: 22548916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterns of violent aggression-induced brain c-fos expression in male mice selected for aggressiveness.
    Haller J; Tóth M; Halasz J; De Boer SF
    Physiol Behav; 2006 Jun; 88(1-2):173-82. PubMed ID: 16687160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predatory hunting and exposure to a live predator induce opposite patterns of Fos immunoreactivity in the PAG.
    Comoli E; Ribeiro-Barbosa ER; Canteras NS
    Behav Brain Res; 2003 Jan; 138(1):17-28. PubMed ID: 12493627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional mapping of the prosencephalic systems involved in organizing predatory behavior in rats.
    Comoli E; Ribeiro-Barbosa ER; Negrão N; Goto M; Canteras NS
    Neuroscience; 2005; 130(4):1055-67. PubMed ID: 15653000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural background of glucocorticoid dysfunction-induced abnormal aggression in rats: involvement of fear- and stress-related structures.
    Halász J; Liposits Z; Kruk MR; Haller J
    Eur J Neurosci; 2002 Feb; 15(3):561-9. PubMed ID: 11876784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Persistent activation of select forebrain regions in aggressive, adolescent cocaine-treated hamsters.
    Knyshevski I; Connor DF; Harrison RJ; Ricci LA; Melloni RH
    Behav Brain Res; 2005 Apr; 159(2):277-86. PubMed ID: 15817190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural systems and the inhibitory modulation of agonistic behavior: a comparison of mammalian species.
    Albert DJ; Walsh ML
    Neurosci Biobehav Rev; 1984; 8(1):5-24. PubMed ID: 6374531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of central and medial amygdala in normal and abnormal aggression: A review of classical approaches.
    Haller J
    Neurosci Biobehav Rev; 2018 Feb; 85():34-43. PubMed ID: 28918358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predatory aggression induced by hypothalamic stimulation: modulation by midbrain periaqueductal gray (PAG).
    Manchanda SK; Poddar A; Saha S; Bhatia SC; Kumar VM; Nayar U
    Neurobiology (Bp); 1995; 3(3-4):405-17. PubMed ID: 8696308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. c-Fos activation and intermale aggression in rats selected for behavior toward humans.
    Konoshenko MY; Timoshenko TV; Plyusnina IZ
    Behav Brain Res; 2013 Jan; 237():103-6. PubMed ID: 23000533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The periaqueductal gray and its potential role in maternal behavior inhibition in response to predatory threats.
    Sukikara MH; Mota-Ortiz SR; Baldo MV; Felicio LF; Canteras NS
    Behav Brain Res; 2010 Jun; 209(2):226-33. PubMed ID: 20138922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperreactivity, muricide, and intraspecific aggression in the rat produced by infusion of local anesthetic into the lateral septum or surrounding areas.
    Albert DJ; Wong RC
    J Comp Physiol Psychol; 1978 Dec; 92(6):1062-73. PubMed ID: 573285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Medial amygdaloid suppression of predatory attack behavior in the cat: II. Role of a GABAergic pathway from the medial to the lateral hypothalamus.
    Han Y; Shaikh MB; Siegel A
    Brain Res; 1996 Apr; 716(1-2):72-83. PubMed ID: 8738222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The activation of prefrontal cortical neurons in aggression--a double labeling study.
    Halász J; Tóth M; Kalló I; Liposits Z; Haller J
    Behav Brain Res; 2006 Nov; 175(1):166-75. PubMed ID: 16978716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural segregation of Fos-protein distribution in the brain following freezing and escape behaviors induced by injections of either glutamate or NMDA into the dorsal periaqueductal gray of rats.
    Ferreira-Netto C; Borelli KG; Brandão ML
    Brain Res; 2005 Jan; 1031(2):151-63. PubMed ID: 15649440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural control of predatory aggression in wild and domesticated animals.
    Nikulina EM
    Neurosci Biobehav Rev; 1991; 15(4):545-7. PubMed ID: 1792017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of central noradrenergic neurons in electroconvulsive shock-induced muricide inhibition in olfactory bulbectomized rats.
    Liou SY; Shibata S; Ueki S
    Pharmacol Biochem Behav; 1985 Jul; 23(1):65-70. PubMed ID: 4041044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of dopaminergic neurons in mouse-killing aggression in rats.
    Tadano T; Abe Y; Morikawa Y; Asao T; Hozumi M; Takahashi N; Tan-no K; Kisara K
    Methods Find Exp Clin Pharmacol; 1997 Oct; 19(8):527-31. PubMed ID: 9442475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.