These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 25637167)

  • 1. Oligomeric state and structural stability of two hyperthermophilic β-glucosidases from Thermotoga petrophila.
    Colussi F; da Silva VM; Miller I; Cota J; de Oliveira LC; de Oliveira Neto M; Squina FM; Garcia W
    Amino Acids; 2015 May; 47(5):937-48. PubMed ID: 25637167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic studies of the interactions between a model polyphenol compound and microbial β-glucosidases.
    da Silva VM; Sato JAP; Araujo JN; Squina FM; Muniz JRC; Riske KA; Garcia W
    PLoS One; 2017; 12(7):e0181629. PubMed ID: 28727856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-productive adsorption of bacterial β-glucosidases on lignins is electrostatically modulated and depends on the presence of fibronection type III-like domain.
    da Silva VM; de Souza AS; Negrão DR; Polikarpov I; Squina FM; de Oliveira Neto M; Muniz JR; Garcia W
    Enzyme Microb Technol; 2016 Jun; 87-88():1-8. PubMed ID: 27178788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of three hyperthermophilic GH1 and GH3 family members with industrial potential.
    Cota J; Corrêa TL; Damásio AR; Diogo JA; Hoffmam ZB; Garcia W; Oliveira LC; Prade RA; Squina FM
    N Biotechnol; 2015 Jan; 32(1):13-20. PubMed ID: 25102284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational changes in a hyperthermostable glycoside hydrolase: enzymatic activity is a consequence of the loop dynamics and protonation balance.
    de Oliveira LC; da Silva VM; Colussi F; Cabral AD; de Oliveira Neto M; Squina FM; Garcia W
    PLoS One; 2015; 10(2):e0118225. PubMed ID: 25723179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose-to-fructose conversion at high temperatures with xylose (glucose) isomerases from Streptomyces murinus and two hyperthermophilic Thermotoga species.
    Bandlish RK; Michael Hess J; Epting KL; Vieille C; Kelly RM
    Biotechnol Bioeng; 2002 Oct; 80(2):185-94. PubMed ID: 12209774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photobiosynthesis of stable and functional silver/silver chloride nanoparticles with hydrolytic activity using hyperthermophilic β-glucosidases with industrial potential.
    Araújo JN; Tofanello A; da Silva VM; Sato JAP; Squina FM; Nantes IL; Garcia W
    Int J Biol Macromol; 2017 Sep; 102():84-91. PubMed ID: 28400186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of ribose-5-phosphate isomerase converting D-psicose to D-allose from Thermotoga lettingae TMO.
    Feng Z; Mu W; Jiang B
    Biotechnol Lett; 2013 May; 35(5):719-24. PubMed ID: 23386225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression, purification, crystallization and preliminary X-ray diffraction analysis of Thermotoga neapolitana beta-glucosidase B.
    Turner P; Pramhed A; Kanders E; Hedström M; Karlsson EN; Logan DT
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2007 Sep; 63(Pt 9):802-6. PubMed ID: 17768360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular insights into substrate specificity and thermal stability of a bacterial GH5-CBM27 endo-1,4-β-D-mannanase.
    dos Santos CR; Paiva JH; Meza AN; Cota J; Alvarez TM; Ruller R; Prade RA; Squina FM; Murakami MT
    J Struct Biol; 2012 Feb; 177(2):469-76. PubMed ID: 22155669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced production, overexpression and characterization of a hyperthermophilic multimodular GH family 2 β‑glucuronidase (TpGUS) cloned from Thermotoga petrophila RKU-1
    Haq IU; Akram F
    Int J Biol Macromol; 2019 Feb; 123():1132-1142. PubMed ID: 30465846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate cleavage pattern, biophysical characterization and low-resolution structure of a novel hyperthermostable arabinanase from Thermotoga petrophila.
    Squina FM; Santos CR; Ribeiro DA; Cota J; de Oliveira RR; Ruller R; Mort A; Murakami MT; Prade RA
    Biochem Biophys Res Commun; 2010 Sep; 399(4):505-11. PubMed ID: 20678476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of two novel β-glucosidases from an Amazon soil metagenomic library.
    Bergmann JC; Costa OY; Gladden JM; Singer S; Heins R; D'haeseleer P; Simmons BA; Quirino BF
    FEMS Microbiol Lett; 2014 Feb; 351(2):147-55. PubMed ID: 24236615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ferredoxin from the hyperthermophile Thermotoga maritima is stable beyond the boiling point of water.
    Pfeil W; Gesierich U; Kleemann GR; Sterner R
    J Mol Biol; 1997 Oct; 272(4):591-6. PubMed ID: 9325114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermotoga neapolitana adenylate kinase is highly active at 30 degrees C.
    Vieille C; Krishnamurthy H; Hyun HH; Savchenko A; Yan H; Zeikus JG
    Biochem J; 2003 Jun; 372(Pt 2):577-85. PubMed ID: 12625835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel mechanism of β-glucosidase stimulation through a monosaccharide binding-induced conformational change.
    Corrêa TLR; Franco Cairo JPL; Cota J; Damasio A; Oliveira LC; Squina FM
    Int J Biol Macromol; 2021 Jan; 166():1188-1196. PubMed ID: 33181222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mode of operation and low-resolution structure of a multi-domain and hyperthermophilic endo-β-1,3-glucanase from Thermotoga petrophila.
    Cota J; Alvarez TM; Citadini AP; Santos CR; de Oliveira Neto M; Oliveira RR; Pastore GM; Ruller R; Prade RA; Murakami MT; Squina FM
    Biochem Biophys Res Commun; 2011 Mar; 406(4):590-4. PubMed ID: 21352806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed evolution of Thermotoga neapolitana xylose isomerase: high activity on glucose at low temperature and low pH.
    Sriprapundh D; Vieille C; Zeikus JG
    Protein Eng; 2003 Sep; 16(9):683-90. PubMed ID: 14560054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis of the destabilization produced by an amino-terminal tag in the beta-glycosidase from the hyperthermophilic archeon Sulfolobus solfataricus.
    Ausili A; Cobucci-Ponzano B; Di Lauro B; D'Avino R; Scirè A; Rossi M; Tanfani F; Moracci M
    Biochimie; 2006 Jul; 88(7):807-17. PubMed ID: 16494988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydride transfer during catalysis by dihydrofolate reductase from Thermotoga maritima.
    Maglia G; Javed MH; Allemann RK
    Biochem J; 2003 Sep; 374(Pt 2):529-35. PubMed ID: 12765545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.