These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 25637373)
21. CathaCyc, a metabolic pathway database built from Catharanthus roseus RNA-Seq data. Van Moerkercke A; Fabris M; Pollier J; Baart GJ; Rombauts S; Hasnain G; Rischer H; Memelink J; Oksman-Caldentey KM; Goossens A Plant Cell Physiol; 2013 May; 54(5):673-85. PubMed ID: 23493402 [TBL] [Abstract][Full Text] [Related]
22. Discrimination of Curcuma species from Asia using intron length polymorphism markers in genes encoding diketide-CoA synthase and curcumin synthase. Liu Q; Zhu S; Hayashi S; Iida O; Takano A; Miyake K; Sukrong S; Agil M; Balachandran I; Nakamura N; Kawahara N; Komatsu K J Nat Med; 2022 Jan; 76(1):69-86. PubMed ID: 34482450 [TBL] [Abstract][Full Text] [Related]
23. Transcriptome analysis of Curcuma wenyujin from Haikou and Wenzhou, and a comparison of the main constituents and related genes of Rhizoma Curcumae. Lu L; Liu P; Yang Y; Zhang Y; Wang C; Feng J; Wei J PLoS One; 2020; 15(11):e0242776. PubMed ID: 33253249 [TBL] [Abstract][Full Text] [Related]
24. De Novo transcriptome assembly (NGS) of Curcuma longa L. rhizome reveals novel transcripts related to anticancer and antimalarial terpenoids. Annadurai RS; Neethiraj R; Jayakumar V; Damodaran AC; Rao SN; Katta MA; Gopinathan S; Sarma SP; Senthilkumar V; Niranjan V; Gopinath A; Mugasimangalam RC PLoS One; 2013; 8(2):e56217. PubMed ID: 23468859 [TBL] [Abstract][Full Text] [Related]
25. Production of Curcuminoids in different in vitro organs of Curcuma longa. Pistelli L; Bertoli A; Gelli F; Bedini L; Ruffoni B; Pistelli L Nat Prod Commun; 2012 Aug; 7(8):1037-42. PubMed ID: 22978224 [TBL] [Abstract][Full Text] [Related]
26. Production of Curcuminoids in Kim EJ; Cha MN; Kim BG; Ahn JH J Microbiol Biotechnol; 2017 May; 27(5):975-982. PubMed ID: 28274102 [TBL] [Abstract][Full Text] [Related]
27. Evaluation of curcuminoids, physiological adaptation, and growth of Curcuma longa under water deficit and controlled temperature. Chintakovid N; Tisarum R; Samphumphuang T; Sotesaritkul T; Cha-Um S Protoplasma; 2022 Mar; 259(2):301-315. PubMed ID: 34023960 [TBL] [Abstract][Full Text] [Related]
28. Untargeted UPLC-MS metabolomics reveals multiple changes of urine composition in healthy adult volunteers after consumption of curcuma longa L. extract. Peron G; Sut S; Dal Ben S; Voinovich D; Dall'Acqua S Food Res Int; 2020 Jan; 127():108730. PubMed ID: 31882111 [TBL] [Abstract][Full Text] [Related]
29. [Effect of growth period, storage time and varieties on the contents of main active constituents of Curcuma longa L. in rhizome]. Li L; Fu S; Qing S Zhongguo Zhong Yao Za Zhi; 1999 Oct; 24(10):589-90, 637. PubMed ID: 12205954 [TBL] [Abstract][Full Text] [Related]
30. Development of intron length polymorphism markers in genes encoding diketide-CoA synthase and curcumin synthase for discriminating Curcuma species. Kita T; Komatsu K; Zhu S; Iida O; Sugimura K; Kawahara N; Taguchi H; Masamura N; Cai SQ Food Chem; 2016 Mar; 194():1329-36. PubMed ID: 26471689 [TBL] [Abstract][Full Text] [Related]
31. Production of curcuminoids from tyrosine by a metabolically engineered Escherichia coli using caffeic acid as an intermediate. Rodrigues JL; Araújo RG; Prather KL; Kluskens LD; Rodrigues LR Biotechnol J; 2015 Apr; 10(4):599-609. PubMed ID: 25641677 [TBL] [Abstract][Full Text] [Related]
32. Tissue-specific metabolite profiling of Turmeric by using laser micro-dissection, ultra-high performance liquid chromatography-quadrupole time of fight-mass spectrometry and liquid chromatography-tandem mass spectrometry. Jaiswal Y; Liang Z; Ho A; Chen H; Zhao Z Eur J Mass Spectrom (Chichester); 2014; 20(5):383-93. PubMed ID: 25707128 [TBL] [Abstract][Full Text] [Related]
33. [Accumulation and biosynthetic of curcuminoids and terpenoids in turmeric rhizome in different development periods]. Sun JR; Bu JL; Cui GH; Ma Y; Zhao H; Mao YP; Zeng W; Guo J; Huang LQ Zhongguo Zhong Yao Za Zhi; 2019 Mar; 44(5):927-934. PubMed ID: 30989851 [TBL] [Abstract][Full Text] [Related]
34. Isolation and characterization of NBS-LRR- resistance gene candidates in turmeric (Curcuma longa cv. surama). Joshi RK; Mohanty S; Subudhi E; Nayak S Genet Mol Res; 2010 Sep; 9(3):1796-806. PubMed ID: 20830672 [TBL] [Abstract][Full Text] [Related]
35. Quantitation of curcuminoids in curcuma rhizome by near-infrared spectroscopic analysis. Tanaka K; Kuba Y; Sasaki T; Hiwatashi F; Komatsu K J Agric Food Chem; 2008 Oct; 56(19):8787-92. PubMed ID: 18767866 [TBL] [Abstract][Full Text] [Related]
36. Food matrix and co-presence of turmeric compounds influence bioavailability of curcumin in healthy humans. Ahmed Nasef N; Loveday SM; Golding M; Martins RN; Shah TM; Clarke M; Coad J; Moughan PJ; Garg ML; Singh H Food Funct; 2019 Aug; 10(8):4584-4592. PubMed ID: 31347643 [TBL] [Abstract][Full Text] [Related]
37. A transcriptomic analysis of turmeric: Curcumin represses the expression of cholesterol biosynthetic genes and synergizes with simvastatin. Einbond LS; Manservisi F; Wu HA; Balick M; Antonetti V; Vornoli A; Menghetti I; Belpoggi F; Redenti S; Roter A Pharmacol Res; 2018 Jun; 132():176-187. PubMed ID: 29408497 [TBL] [Abstract][Full Text] [Related]
38. Secondary metabolite profiling of Curcuma species grown at different locations using GC/TOF and UPLC/Q-TOF MS. Lee J; Jung Y; Shin JH; Kim HK; Moon BC; Ryu DH; Hwang GS Molecules; 2014 Jul; 19(7):9535-51. PubMed ID: 25000465 [TBL] [Abstract][Full Text] [Related]
39. [Research progresses in the biosynthesis of curcuminoids]. Wang L; Han X; Wang F; Sun L; Xin F Sheng Wu Gong Cheng Xue Bao; 2021 Feb; 37(2):404-417. PubMed ID: 33645144 [TBL] [Abstract][Full Text] [Related]
40. Metabolic Engineering for Improved Curcumin Biosynthesis in Wu J; Chen W; Zhang Y; Zhang X; Jin JM; Tang SY J Agric Food Chem; 2020 Sep; 68(39):10772-10779. PubMed ID: 32864959 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]