These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 25637515)

  • 21. Heterogeneity of tensile strength and matrix metalloproteinase activity in the wall of abdominal aortic aneurysms.
    Vallabhaneni SR; Gilling-Smith GL; How TV; Carter SD; Brennan JA; Harris PL
    J Endovasc Ther; 2004 Aug; 11(4):494-502. PubMed ID: 15298501
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The quasi-static failure properties of the abdominal aortic aneurysm wall estimated by a mixed experimental-numerical approach.
    Forsell C; Swedenborg J; Roy J; Gasser TC
    Ann Biomed Eng; 2013 Jul; 41(7):1554-66. PubMed ID: 23263935
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A simple method of estimating the stress acting on a bilaterally symmetric abdominal aortic aneurysm.
    Yamada H; Hasegawa Y
    Comput Methods Biomech Biomed Engin; 2007 Feb; 10(1):53-61. PubMed ID: 18651271
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measurement and analysis of ultimate mechanical properties, stress-strain curve fit, and elastic modulus formula of human abdominal aortic aneurysm and nonaneurysmal abdominal aorta.
    Xiong J; Wang SM; Zhou W; Wu JG
    J Vasc Surg; 2008 Jul; 48(1):189-95. PubMed ID: 18406563
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of wall calcifications in patient-specific wall stress analyses of abdominal aortic aneurysms.
    Speelman L; Bohra A; Bosboom EM; Schurink GW; van de Vosse FN; Makaorun MS; Vorp DA
    J Biomech Eng; 2007 Feb; 129(1):105-9. PubMed ID: 17227104
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid-structure interaction.
    Scotti CM; Jimenez J; Muluk SC; Finol EA
    Comput Methods Biomech Biomed Engin; 2008 Jun; 11(3):301-22. PubMed ID: 18568827
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simulation model for assessing quality of ultrasound strain estimation in abdominal aortic aneurysm.
    Brekken R; Muller S; Gjerald SU; Hernes TA
    Ultrasound Med Biol; 2012 May; 38(5):889-96. PubMed ID: 22402023
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flow-induced wall shear stress in abdominal aortic aneurysms: Part I--steady flow hemodynamics.
    Finol EA; Amon CH
    Comput Methods Biomech Biomed Engin; 2002 Aug; 5(4):309-18. PubMed ID: 12186710
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rupture of abdominal aortic aneurysm in the low wall stress zone.
    Koncar I; Davidovic L
    Eur J Vasc Endovasc Surg; 2015 Mar; 49(3):254. PubMed ID: 25595668
    [No Abstract]   [Full Text] [Related]  

  • 30. Finite element and photoelastic modelling of an abdominal aortic aneurysm: a comparative study.
    Callanan A; Morris LG; McGloughlin TM
    Comput Methods Biomech Biomed Engin; 2012; 15(10):1111-9. PubMed ID: 21660780
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of differing material properties in media and adventitia on arterial adaptation--application to aneurysm formation and rupture.
    Schmid H; Grytsan A; Poshtan E; Watton PN; Itskov M
    Comput Methods Biomech Biomed Engin; 2013; 16(1):33-53. PubMed ID: 22149119
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-linear viscoelastic behavior of abdominal aortic aneurysm thrombus.
    van Dam EA; Dams SD; Peters GW; Rutten MC; Schurink GW; Buth J; van de Vosse FN
    Biomech Model Mechanobiol; 2008 Apr; 7(2):127-37. PubMed ID: 17492322
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A two-system, single-analysis, fluid-structure interaction technique for modelling abdominal aortic aneurysms.
    Kelly SC; O'Rourke MJ
    Proc Inst Mech Eng H; 2010; 224(8):955-69. PubMed ID: 20923114
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A model of growth and rupture of abdominal aortic aneurysm.
    Volokh KY; Vorp DA
    J Biomech; 2008; 41(5):1015-21. PubMed ID: 18255074
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational analysis of type II endoleaks in a stented abdominal aortic aneurysm model.
    Li Z; Kleinstreuer C
    J Biomech; 2006; 39(14):2573-82. PubMed ID: 16221475
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hemodynamics of the normal aorta compared to fusiform and saccular abdominal aortic aneurysms with emphasis on a potential thrombus formation mechanism.
    Biasetti J; Gasser TC; Auer M; Hedin U; Labruto F
    Ann Biomed Eng; 2010 Feb; 38(2):380-90. PubMed ID: 19936925
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of blood flow and vessel geometry on wall stress and rupture risk of abdominal aortic aneurysms.
    Li Z; Kleinstreuer C
    J Med Eng Technol; 2006; 30(5):283-97. PubMed ID: 16980283
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modelling the influence of endothelial heterogeneity on the progression of arterial disease: application to abdominal aortic aneurysm evolution.
    Aparício P; Mandaltsi A; Boamah J; Chen H; Selimovic A; Bratby M; Uberoi R; Ventikos Y; Watton PN
    Int J Numer Method Biomed Eng; 2014 May; 30(5):563-86. PubMed ID: 24424963
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Rupture risk of abdominal aortic aneurysms. The role of computational mechanics].
    Giannoglou G; Giannakoulas G; Hatzitolios AI; Rudolf J
    Herz; 2008 Jul; 33(5):354-61. PubMed ID: 18773155
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wall stress in media layer of stented three-layered aortic aneurysm at different intraluminal thrombus locations with pulsatile heart cycle.
    Rahmani S; Alagheband M; Karimi A; Alizadeh M; Navidbakhsh M
    J Med Eng Technol; 2015 May; 39(4):239-45. PubMed ID: 25906361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.