These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
438 related articles for article (PubMed ID: 2563769)
1. Characterization of L-glutamate action on the release of endogenous dopamine from the rat caudate-putamen. Clow DW; Jhamandas K J Pharmacol Exp Ther; 1989 Feb; 248(2):722-8. PubMed ID: 2563769 [TBL] [Abstract][Full Text] [Related]
2. Modulation of dendritic release of dopamine by N-methyl-D-aspartate receptors in rat substantia nigra. Araneda R; Bustos G J Neurochem; 1989 Mar; 52(3):962-70. PubMed ID: 2563759 [TBL] [Abstract][Full Text] [Related]
3. Glutamate-evoked release of endogenous brain dopamine: inhibition by an excitatory amino acid antagonist and an enkephalin analogue. Jhamandas K; Marien M Br J Pharmacol; 1987 Apr; 90(4):641-50. PubMed ID: 2884003 [TBL] [Abstract][Full Text] [Related]
4. Characterization of the inhibition of excitatory amino acid-induced neurotransmitter release in the rat striatum by phencyclidine-like drugs. Snell LD; Johnson KM J Pharmacol Exp Ther; 1986 Sep; 238(3):938-46. PubMed ID: 2875174 [TBL] [Abstract][Full Text] [Related]
5. N-methyl-D-aspartic acid (NMDA) and non-NMDA receptors regulating hippocampal norepinephrine release. I. Location on axon terminals and pharmacological characterization. Pittaluga A; Raiteri M J Pharmacol Exp Ther; 1992 Jan; 260(1):232-7. PubMed ID: 1370540 [TBL] [Abstract][Full Text] [Related]
6. Subtypes of excitatory amino acid receptors involved in the stimulation of [3H]dopamine release from cell cultures of rat ventral mesencephalon. Mount H; Quirion R; Kohn-Alexander J; Boksa P Synapse; 1990; 5(4):271-80. PubMed ID: 2163120 [TBL] [Abstract][Full Text] [Related]
7. Glutamate receptors of the non-N-methyl-D-aspartic acid type mediate the increase in luteinizing hormone-releasing hormone release by excitatory amino acids in vitro. Donoso AO; López FJ; Negro-Vilar A Endocrinology; 1990 Jan; 126(1):414-20. PubMed ID: 2152870 [TBL] [Abstract][Full Text] [Related]
8. Selective inhibition of excitatory amino acids by divalent cations. A novel means for distinguishing N-methyl-D-aspartic acid-, kainate- and quisqualate-mediated actions in the mouse spinal cord. Hornfeldt CS; Larson AA J Pharmacol Exp Ther; 1989 Dec; 251(3):1064-8. PubMed ID: 2574739 [TBL] [Abstract][Full Text] [Related]
9. Glutamate stimulates somatostatin release from diencephalic neurons in primary culture. Tapia-Arancibia L; Astier H Endocrinology; 1988 Nov; 123(5):2360-6. PubMed ID: 2901950 [TBL] [Abstract][Full Text] [Related]
10. [3H]norepinephrine release from hippocampal slices is an in vitro biochemical tool for investigating the pharmacological properties of excitatory amino acid receptors. Vezzani A; Wu HQ; Samanin R J Neurochem; 1987 Nov; 49(5):1438-42. PubMed ID: 2889798 [TBL] [Abstract][Full Text] [Related]
11. Effects of L-cysteine-sulphinate and L-aspartate, mixed excitatory amino acid agonists, on the membrane potential of cat caudate neurons. Turski WA; Herrling PL; Do KQ Brain Res; 1987 Jun; 414(2):330-8. PubMed ID: 3304528 [TBL] [Abstract][Full Text] [Related]
12. Interaction of L-glutamate and magnesium with phencyclidine recognition sites in rat brain: evidence for multiple affinity states of the phencyclidine/N-methyl-D-aspartate receptor complex. Loo PS; Braunwalder AF; Lehmann J; Williams M; Sills MA Mol Pharmacol; 1987 Dec; 32(6):820-30. PubMed ID: 2892125 [TBL] [Abstract][Full Text] [Related]
13. Met-enkephalin release from slices of the rat striatum and globus pallidus: stimulation by excitatory amino acids. Ruzicka BB; Jhamandas K J Pharmacol Exp Ther; 1991 Jun; 257(3):1025-33. PubMed ID: 1675284 [TBL] [Abstract][Full Text] [Related]
14. Inhibition by phencyclidine of excitatory amino acid-stimulated release of neurotransmitter in the nucleus accumbens. Jones SM; Snell LD; Johnson KM Neuropharmacology; 1987; 26(2-3):173-9. PubMed ID: 2884587 [TBL] [Abstract][Full Text] [Related]
15. Sensitivity of rubrospinal neurons to excitatory amino acids in the rat red nucleus in vivo. Billard JM; Daniel H; Pumain R Neurosci Lett; 1991 Dec; 134(1):49-52. PubMed ID: 1687699 [TBL] [Abstract][Full Text] [Related]
16. Effects of excitatory amino acids on the oxygen consumption of hippocampal slices from the guinea pig. Nishizaki T; Okada Y Brain Res; 1988 Jun; 452(1-2):11-20. PubMed ID: 2900048 [TBL] [Abstract][Full Text] [Related]
17. Uneven distribution of excitatory amino acid receptors on ventral horn neurones of newborn rat spinal cord. Onodera K; Takeuchi A J Physiol; 1991 Aug; 439():257-76. PubMed ID: 1680187 [TBL] [Abstract][Full Text] [Related]
18. Functional and biochemical characteristics of a putative quisqualate-type receptor in rat striatum: effect of brain lesions. Rudolph MI; Bustos G Neurochem Res; 1986 Nov; 11(11):1533-45. PubMed ID: 2825052 [TBL] [Abstract][Full Text] [Related]
19. Release of 3H-noradrenaline by excitatory amino acids from rat mediobasal hypothalamus and the influence of aging. Navarro CE; Cabrera RJ; Donoso AO Brain Res Bull; 1994; 33(6):677-82. PubMed ID: 7910775 [TBL] [Abstract][Full Text] [Related]
20. A quantitative description of excitatory amino acid neurotransmitter responses on cultured embryonic Xenopus spinal neurons. Sands SB; Barish ME Brain Res; 1989 Nov; 502(2):375-86. PubMed ID: 2555028 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]