BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 25637745)

  • 1. Deletion of Shank1 has minimal effects on the molecular composition and function of glutamatergic afferent postsynapses in the mouse inner ear.
    Braude JP; Vijayakumar S; Baumgarner K; Laurine R; Jones TA; Jones SM; Pyott SJ
    Hear Res; 2015 Mar; 321():52-64. PubMed ID: 25637745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced sensory stimulation alters the molecular make-up of glutamatergic hair cell synapses in the developing cochlea.
    Barclay M; Constable R; James NR; Thorne PR; Montgomery JM
    Neuroscience; 2016 Jun; 325():50-62. PubMed ID: 27012610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A procedure to label inner ear afferent nerve endings for calcium imaging.
    Boyer S; Ruel J; Puel JL; Chabbert C
    Brain Res Brain Res Protoc; 2004 Jun; 13(2):91-8. PubMed ID: 15171991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thrombospondins 1 and 2 are important for afferent synapse formation and function in the inner ear.
    Mendus D; Sundaresan S; Grillet N; Wangsawihardja F; Leu R; Müller U; Jones SM; Mustapha M
    Eur J Neurosci; 2014 Apr; 39(8):1256-67. PubMed ID: 24460873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and function of the adult inner ear in the mouse following prenatal irradiation.
    Hultcrantz M
    Scand Audiol Suppl; 1985; 24():1-24. PubMed ID: 3879375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecularly and structurally distinct synapses mediate reliable encoding and processing of auditory information.
    Wichmann C
    Hear Res; 2015 Dec; 330(Pt B):178-90. PubMed ID: 26188105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporally controlled overexpression of cyclin D1 triggers generation of supernumerary cells in the postnatal mouse inner ear.
    Tarang S; Pyakurel U; Weston MD; Vijayakumar S; Jones T; Wagner KU; Rocha-Sanchez SM
    Hear Res; 2020 May; 390():107951. PubMed ID: 32244147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Null mutation of alpha1D Ca2+ channel gene results in deafness but no vestibular defect in mice.
    Dou H; Vazquez AE; Namkung Y; Chu H; Cardell EL; Nie L; Parson S; Shin HS; Yamoah EN
    J Assoc Res Otolaryngol; 2004 Jun; 5(2):215-26. PubMed ID: 15357422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repetitive behaviors in the Shank1 knockout mouse model for autism spectrum disorder: developmental aspects and effects of social context.
    Sungur AÖ; Vörckel KJ; Schwarting RK; Wöhr M
    J Neurosci Methods; 2014 Aug; 234():92-100. PubMed ID: 24820912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cochlear afferent innervation development.
    Delacroix L; Malgrange B
    Hear Res; 2015 Dec; 330(Pt B):157-69. PubMed ID: 26231304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurod1 regulates survival and formation of connections in mouse ear and brain.
    Jahan I; Kersigo J; Pan N; Fritzsch B
    Cell Tissue Res; 2010 Jul; 341(1):95-110. PubMed ID: 20512592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rbpj regulates development of prosensory cells in the mammalian inner ear.
    Yamamoto N; Chang W; Kelley MW
    Dev Biol; 2011 May; 353(2):367-79. PubMed ID: 21420948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vestibular role of KCNQ4 and KCNQ5 K+ channels revealed by mouse models.
    Spitzmaul G; Tolosa L; Winkelman BH; Heidenreich M; Frens MA; Chabbert C; de Zeeuw CI; Jentsch TJ
    J Biol Chem; 2013 Mar; 288(13):9334-44. PubMed ID: 23408425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of the carrier protein apolipoprotein D in the mouse inner ear.
    Hildebrand MS; de Silva MG; Klockars T; Solares CA; Hirose K; Smith JD; Patel SC; Dahl HH
    Hear Res; 2005 Feb; 200(1-2):102-14. PubMed ID: 15668042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SHANK1 and autism spectrum disorders.
    Gong X; Wang H
    Sci China Life Sci; 2015 Oct; 58(10):985-90. PubMed ID: 26335738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cochleovestibular gene transfer in neonatal mice by canalostomy.
    Guo JY; Liu YY; Qu TF; Peng Z; Xie J; Wang GP; Gong SS
    Neuroreport; 2017 Aug; 28(11):682-688. PubMed ID: 28614181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Audibility, speech perception and processing of temporal cues in ribbon synaptic disorders due to OTOF mutations.
    Santarelli R; del Castillo I; Cama E; Scimemi P; Starr A
    Hear Res; 2015 Dec; 330(Pt B):200-12. PubMed ID: 26188103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volume gradients in inner hair cell-auditory nerve fiber pre- and postsynaptic proteins differ across mouse strains.
    Reijntjes DOJ; Köppl C; Pyott SJ
    Hear Res; 2020 May; 390():107933. PubMed ID: 32203820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of frequenin in the mouse inner ear during development, comparison with other calcium-binding proteins and synaptophysin.
    Sage C; Ventéo S; Jeromin A; Roder J; Dechesne CJ
    Hear Res; 2000 Dec; 150(1-2):70-82. PubMed ID: 11077193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atoh1 null mice show directed afferent fiber growth to undifferentiated ear sensory epithelia followed by incomplete fiber retention.
    Fritzsch B; Matei VA; Nichols DH; Bermingham N; Jones K; Beisel KW; Wang VY
    Dev Dyn; 2005 Jun; 233(2):570-83. PubMed ID: 15844198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.