These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 25637747)

  • 1. Biochemical mechanisms of signaling: perspectives in plants under arsenic stress.
    Islam E; Khan MT; Irem S
    Ecotoxicol Environ Saf; 2015 Apr; 114():126-33. PubMed ID: 25637747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.
    Shahid M; Pourrut B; Dumat C; Nadeem M; Aslam M; Pinelli E
    Rev Environ Contam Toxicol; 2014; 232():1-44. PubMed ID: 24984833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An update on nitric oxide and its benign role in plant responses under metal stress.
    Sahay S; Gupta M
    Nitric Oxide; 2017 Jul; 67():39-52. PubMed ID: 28456602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide (NO) in alleviation of heavy metal induced phytotoxicity and its role in protein nitration.
    Saxena I; Shekhawat GS
    Nitric Oxide; 2013 Aug; 32():13-20. PubMed ID: 23545403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of nitric oxide in alleviating heavy metal toxicity in plants.
    Xiong J; Fu G; Tao L; Zhu C
    Arch Biochem Biophys; 2010 May; 497(1-2):13-20. PubMed ID: 20193657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of nitric oxide in plant responses to heavy metal stress: exogenous application versus endogenous production.
    Terrón-Camero LC; Peláez-Vico MÁ; Del-Val C; Sandalio LM; Romero-Puertas MC
    J Exp Bot; 2019 Aug; 70(17):4477-4488. PubMed ID: 31125416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MAPK Cascades and Transcriptional Factors: Regulation of Heavy Metal Tolerance in Plants.
    Li S; Han X; Lu Z; Qiu W; Yu M; Li H; He Z; Zhuo R
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Citric Acid-Mediated Abiotic Stress Tolerance in Plants.
    Tahjib-Ul-Arif M; Zahan MI; Karim MM; Imran S; Hunter CT; Islam MS; Mia MA; Hannan MA; Rhaman MS; Hossain MA; Brestic M; Skalicky M; Murata Y
    Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy metals and arsenic stress in food crops: Elucidating antioxidative defense mechanisms in hyperaccumulators for food security, agricultural sustainability, and human health.
    Rai PK; Sonne C; Kim KH
    Sci Total Environ; 2023 May; 874():162327. PubMed ID: 36813200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic Uptake, Toxicity, Detoxification, and Speciation in Plants: Physiological, Biochemical, and Molecular Aspects.
    Abbas G; Murtaza B; Bibi I; Shahid M; Niazi NK; Khan MI; Amjad M; Hussain M;
    Int J Environ Res Public Health; 2018 Jan; 15(1):. PubMed ID: 29301332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lead uptake, toxicity, and detoxification in plants.
    Pourrut B; Shahid M; Dumat C; Winterton P; Pinelli E
    Rev Environ Contam Toxicol; 2011; 213():113-36. PubMed ID: 21541849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice).
    Singh HP; Kaur S; Batish DR; Sharma VP; Sharma N; Kohli RK
    Nitric Oxide; 2009 Jun; 20(4):289-97. PubMed ID: 19233306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: A review.
    Adrees M; Ali S; Rizwan M; Zia-Ur-Rehman M; Ibrahim M; Abbas F; Farid M; Qayyum MF; Irshad MK
    Ecotoxicol Environ Saf; 2015 Sep; 119():186-97. PubMed ID: 26004359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracing the role of plant proteins in the response to metal toxicity: a comprehensive review.
    Jain S; Muneer S; Guerriero G; Liu S; Vishwakarma K; Chauhan DK; Dubey NK; Tripathi DK; Sharma S
    Plant Signal Behav; 2018; 13(9):e1507401. PubMed ID: 30188762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization.
    Schützendübel A; Polle A
    J Exp Bot; 2002 May; 53(372):1351-65. PubMed ID: 11997381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methylglyoxal - a signaling molecule in plant abiotic stress responses.
    Mostofa MG; Ghosh A; Li ZG; Siddiqui MN; Fujita M; Tran LP
    Free Radic Biol Med; 2018 Jul; 122():96-109. PubMed ID: 29545071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Oxidative stress-related signals and their regulation under Cd stress: A review.].
    Zhang RR; Zhang P; Du ST
    Ying Yong Sheng Tai Xue Bao; 2016 Mar; 27(3):981-992. PubMed ID: 29726206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent progress in the knowledge on the alleviating effect of nitric oxide on heavy metal stress in plants.
    Wei L; Zhang J; Wang C; Liao W
    Plant Physiol Biochem; 2020 Feb; 147():161-171. PubMed ID: 31865162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Mechanisms of Nitric Oxide (NO) Signaling and Reactive Oxygen Species (ROS) Homeostasis during Abiotic Stresses in Plants.
    Wani KI; Naeem M; Castroverde CDM; Kalaji HM; Albaqami M; Aftab T
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.