These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 25637974)
1. Fully relativistic complete active space self-consistent field for large molecules: quasi-second-order minimax optimization. Bates JE; Shiozaki T J Chem Phys; 2015 Jan; 142(4):044112. PubMed ID: 25637974 [TBL] [Abstract][Full Text] [Related]
2. Large-scale relativistic complete active space self-consistent field with robust convergence. Reynolds RD; Yanai T; Shiozaki T J Chem Phys; 2018 Jul; 149(1):014106. PubMed ID: 29981535 [TBL] [Abstract][Full Text] [Related]
3. Large-scale Dirac-Fock-Breit method using density fitting and 2-spinor basis functions. Kelley MS; Shiozaki T J Chem Phys; 2013 May; 138(20):204113. PubMed ID: 23742460 [TBL] [Abstract][Full Text] [Related]
4. Fully relativistic self-consistent field under a magnetic field. Reynolds RD; Shiozaki T Phys Chem Chem Phys; 2015 Jun; 17(22):14280-3. PubMed ID: 25310527 [TBL] [Abstract][Full Text] [Related]
5. Two-component multi-configurational second-order perturbation theory with Kramers restricted complete active space self-consistent field reference function and spin-orbit relativistic effective core potential. Kim I; Lee YS J Chem Phys; 2014 Oct; 141(16):164104. PubMed ID: 25362269 [TBL] [Abstract][Full Text] [Related]
6. Modeling positrons in molecular electronic structure calculations with the nuclear-electronic orbital method. Adamson PE; Duan XF; Burggraf LW; Pak MV; Swalina C; Hammes-Schiffer S J Phys Chem A; 2008 Feb; 112(6):1346-51. PubMed ID: 18215029 [TBL] [Abstract][Full Text] [Related]
7. Two-component Kramers restricted complete active space self-consistent field method with relativistic effective core potential revisited: theory, implementation, and applications to spin-orbit splitting of lower p-block atoms. Kim I; Lee YS J Chem Phys; 2013 Oct; 139(13):134115. PubMed ID: 24116560 [TBL] [Abstract][Full Text] [Related]
8. Cost-Effective Treatment of Scalar Relativistic Effects for Multireference Systems: A CASSCF Implementation Based on the Spin-free Dirac-Coulomb Hamiltonian. Lipparini F; Gauss J J Chem Theory Comput; 2016 Sep; 12(9):4284-95. PubMed ID: 27464026 [TBL] [Abstract][Full Text] [Related]
9. Relativistic density functional calculations using two-spinor minimax finite-element method and linear combination of atomic orbitals for ZnO, CdO, HgO, UubO and Cu2, Ag2, Au2, Rg2. Kullie O; Zhang H; Kolb J; Kolb D J Chem Phys; 2006 Dec; 125(24):244303. PubMed ID: 17199347 [TBL] [Abstract][Full Text] [Related]
10. The electronic spectrum of AgCl2: ab initio benchmark versus density-functional theory calculations on the lowest ligand-field states including spin-orbit effects. Ramírez-Solís A; Poteau R; Daudey JP J Chem Phys; 2006 Jan; 124(3):034307. PubMed ID: 16438583 [TBL] [Abstract][Full Text] [Related]
11. Electron correlation and relativistic effects in atomic structure calculations of the thorium atom. Roy SK; Prasad R; Chandra P J Chem Phys; 2011 Jun; 134(23):234302. PubMed ID: 21702551 [TBL] [Abstract][Full Text] [Related]
12. A direct relativistic four-component multiconfiguration self-consistent-field method for molecules. Thyssen J; Fleig T; Jensen HJ J Chem Phys; 2008 Jul; 129(3):034109. PubMed ID: 18647018 [TBL] [Abstract][Full Text] [Related]
13. Time-dependent four-component relativistic density functional theory for excitation energies. Gao J; Liu W; Song B; Liu C J Chem Phys; 2004 Oct; 121(14):6658-66. PubMed ID: 15473721 [TBL] [Abstract][Full Text] [Related]
14. MCSCF optimization revisited. II. Combined first- and second-order orbital optimization for large molecules. Kreplin DA; Knowles PJ; Werner HJ J Chem Phys; 2020 Feb; 152(7):074102. PubMed ID: 32087666 [TBL] [Abstract][Full Text] [Related]
15. A study of the fixed-node error in quantum Monte Carlo calculations of electronic transitions: the case of the singlet n-->pi* (CO) transition of the acrolein. Bouabça T; Ben Amor N; Maynau D; Caffarel M J Chem Phys; 2009 Mar; 130(11):114107. PubMed ID: 19317531 [TBL] [Abstract][Full Text] [Related]
16. Configuration interaction singles natural orbitals: an orbital basis for an efficient and size intensive multireference description of electronic excited states. Shu Y; Hohenstein EG; Levine BG J Chem Phys; 2015 Jan; 142(2):024102. PubMed ID: 25591333 [TBL] [Abstract][Full Text] [Related]
17. Analytical gradients of the state-average complete active space self-consistent field method with density fitting. Delcey MG; Pedersen TB; Aquilante F; Lindh R J Chem Phys; 2015 Jul; 143(4):044110. PubMed ID: 26233110 [TBL] [Abstract][Full Text] [Related]
18. Excitation Energies from Real-Time Propagation of the Four-Component Dirac-Kohn-Sham Equation. Repisky M; Konecny L; Kadek M; Komorovsky S; Malkin OL; Malkin VG; Ruud K J Chem Theory Comput; 2015 Mar; 11(3):980-91. PubMed ID: 26579752 [TBL] [Abstract][Full Text] [Related]
19. Canonical-ensemble state-averaged complete active space self-consistent field (SA-CASSCF) strategy for problems with more diabatic than adiabatic states: charge-bond resonance in monomethine cyanines. Olsen S J Chem Phys; 2015 Jan; 142(4):044116. PubMed ID: 25637978 [TBL] [Abstract][Full Text] [Related]
20. An ab initio theoretical study of the electronic structure of UO2(+) and [UO2(CO3)3]5-. Ruipérez F; Danilo C; Réal F; Flament JP; Vallet V; Wahlgren U J Phys Chem A; 2009 Feb; 113(8):1420-8. PubMed ID: 19182969 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]