These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 25638103)

  • 1. Instrument for in-situ orientation of superconducting thin-film resonators used for electron-spin resonance experiments.
    Mowry A; Chen Y; Kubasek J; Friedman JR
    Rev Sci Instrum; 2015 Jan; 86(1):014702. PubMed ID: 25638103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superconducting coplanar waveguide resonators for low temperature pulsed electron spin resonance spectroscopy.
    Malissa H; Schuster DI; Tyryshkin AM; Houck AA; Lyon SA
    Rev Sci Instrum; 2013 Feb; 84(2):025116. PubMed ID: 23464260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Materials loss measurements using superconducting microwave resonators.
    McRae CRH; Wang H; Gao J; Vissers MR; Brecht T; Dunsworth A; Pappas DP; Mutus J
    Rev Sci Instrum; 2020 Sep; 91(9):091101. PubMed ID: 33003823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trapping a single vortex and reducing quasiparticles in a superconducting resonator.
    Nsanzineza I; Plourde BL
    Phys Rev Lett; 2014 Sep; 113(11):117002. PubMed ID: 25260000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superconducting micro-resonators for electron spin resonance - the good, the bad, and the future.
    Artzi Y; Yishay Y; Fanciulli M; Jbara M; Blank A
    J Magn Reson; 2022 Jan; 334():107102. PubMed ID: 34847488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and Characterization of Superconducting Resonators.
    Cataldo G; Barrentine EM; Brown AD; Moseley SH; U-Yen K; Wollack EJ
    J Vis Exp; 2016 May; (111):. PubMed ID: 27284966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulsed electron spin resonance of an organic microcrystal by dispersive readout.
    Keyser AKV; Burnett JJ; Kubatkin SE; Danilov AV; Oxborrow M; de Graaf SE; Lindström T
    J Magn Reson; 2020 Dec; 321():106853. PubMed ID: 33128916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing dielectric properties of ultra-thin films using superconducting coplanar microwave resonators.
    Ebensperger NG; Ferdinand B; Koelle D; Kleiner R; Dressel M; Scheffler M
    Rev Sci Instrum; 2019 Nov; 90(11):114701. PubMed ID: 31779383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-temperature superconducting radiofrequency probe for magnetic resonance imaging applications operated below ambient pressure in a simple liquid-nitrogen cryostat.
    Lambert S; Ginefri JC; Poirier-Quinot M; Darrasse L
    Rev Sci Instrum; 2013 May; 84(5):054701. PubMed ID: 23742569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron Spin Resonance at the Level of 10^{4} Spins Using Low Impedance Superconducting Resonators.
    Eichler C; Sigillito AJ; Lyon SA; Petta JR
    Phys Rev Lett; 2017 Jan; 118(3):037701. PubMed ID: 28157376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ESR spectrometer with a loop-gap resonator for cw and time resolved studies in a superconducting magnet.
    Simon F; Murányi F
    J Magn Reson; 2005 Apr; 173(2):288-95. PubMed ID: 15780920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A rectangular loop-gap resonator for EPR studies of aqueous samples.
    Piasecki W; Froncisz W; Hubbell WL
    J Magn Reson; 1998 Sep; 134(1):36-43. PubMed ID: 9740728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ broadband cryogenic calibration for two-port superconducting microwave resonators.
    Yeh JH; Anlage SM
    Rev Sci Instrum; 2013 Mar; 84(3):034706. PubMed ID: 23556836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superconducting radio-frequency resonator in magnetic fields up to 6 T.
    Ebrahimi MS; Stallkamp N; Quint W; Wiesel M; Vogel M; Martin A; Birkl G
    Rev Sci Instrum; 2016 Jul; 87(7):075110. PubMed ID: 27475598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conceptual design of a high-Q, 3.4-GHz thin film quartz resonator.
    Patel MS; Yong YK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):912-20. PubMed ID: 19473909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The quality factor of a superconducting rf resonator in a magnetic field.
    Ulmer S; Kracke H; Blaum K; Kreim S; Mooser A; Quint W; Rodegheri CC; Walz J
    Rev Sci Instrum; 2009 Dec; 80(12):123302. PubMed ID: 20059135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental cell for molecular beam deposition and magnetic resonance studies of matrix isolated radicals at temperatures below 1 K.
    Sheludiakov S; Ahokas J; Vainio O; Järvinen J; Zvezdov D; Vasiliev S; Khmelenko VV; Mao S; Lee DM
    Rev Sci Instrum; 2014 May; 85(5):053902. PubMed ID: 24880382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An apparatus for pulsed ESR and DNP experiments using optically excited triplet states down to liquid helium temperatures.
    Eichhorn TR; Haag M; van den Brandt B; Hautle P; Wenckebach WT; Jannin S; van der Klink JJ; Comment A
    J Magn Reson; 2013 Sep; 234():58-66. PubMed ID: 23838526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallel coil resonators for time-domain radiofrequency electron paramagnetic resonance imaging of biological objects.
    Devasahayam N; Subramanian S; Murugesan R; Cook JA; Afeworki M; Tschudin RG; Mitchell JB; Krishna MC
    J Magn Reson; 2000 Jan; 142(1):168-76. PubMed ID: 10617448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-frequency EPR applications of open nonradiative resonators.
    Annino G; Fittipaldi M; Martinelli M; Moons H; Van Doorslaer S; Goovaerts E
    J Magn Reson; 2009 Sep; 200(1):29-37. PubMed ID: 19523864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.