These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 25638564)

  • 21. Accessing epigenetic variation in the plant methylome.
    Kim KD; El Baidouri M; Jackson SA
    Brief Funct Genomics; 2014 Jul; 13(4):318-27. PubMed ID: 24562692
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Harnessing epigenetic variability for crop improvement: current status and future prospects.
    Kim EY; Kim KD; Cho J
    Genes Genomics; 2022 Mar; 44(3):259-266. PubMed ID: 34807374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Doubling down on genomes: polyploidy and crop plants.
    Renny-Byfield S; Wendel JF
    Am J Bot; 2014 Oct; 101(10):1711-25. PubMed ID: 25090999
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crop genome sequencing: lessons and rationales.
    Feuillet C; Leach JE; Rogers J; Schnable PS; Eversole K
    Trends Plant Sci; 2011 Feb; 16(2):77-88. PubMed ID: 21081278
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Epigenetics and Epigenomics of Plants.
    Yadav CB; Pandey G; Muthamilarasan M; Prasad M
    Adv Biochem Eng Biotechnol; 2018; 164():237-261. PubMed ID: 29356846
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Epigenetic changes and their relationship to somaclonal variation: a need to monitor the micropropagation of plantation crops.
    Azizi P; Hanafi MM; Sahebi M; Harikrishna JA; Taheri S; Yassoralipour A; Nasehi A
    Funct Plant Biol; 2020 May; 47(6):508-523. PubMed ID: 32349860
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Next-generation technologies and data analytical approaches for epigenomics.
    Mensaert K; Denil S; Trooskens G; Van Criekinge W; Thas O; De Meyer T
    Environ Mol Mutagen; 2014 Apr; 55(3):155-70. PubMed ID: 24327356
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genomics of crop wild relatives: expanding the gene pool for crop improvement.
    Brozynska M; Furtado A; Henry RJ
    Plant Biotechnol J; 2016 Apr; 14(4):1070-85. PubMed ID: 26311018
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low-Input Whole-Genome Bisulfite Sequencing.
    Krepelova A; Neri F
    Methods Mol Biol; 2021; 2351():353-368. PubMed ID: 34382200
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plant genome sequencing: applications for crop improvement.
    Edwards D; Batley J
    Plant Biotechnol J; 2010 Jan; 8(1):2-9. PubMed ID: 19906089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plant epigenomics for extenuation of abiotic stresses: challenges and future perspectives.
    Singh D; Chaudhary P; Taunk J; Kumar Singh C; Sharma S; Singh VJ; Singh D; Chinnusamy V; Yadav R; Pal M
    J Exp Bot; 2021 Oct; 72(20):6836-6855. PubMed ID: 34302734
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA methylation variations underlie lettuce domestication and divergence.
    Cao S; Sawettalake N; Li P; Fan S; Shen L
    Genome Biol; 2024 Jun; 25(1):158. PubMed ID: 38886807
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heritable epigenetic diversity for conservation and utilization of epigenetic germplasm resources of clonal East African Highland banana (EAHB) accessions.
    Kitavi M; Cashell R; Ferguson M; Lorenzen J; Nyine M; McKeown PC; Spillane C
    Theor Appl Genet; 2020 Sep; 133(9):2605-2625. PubMed ID: 32719910
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Epigenetic Landmarks of Leaf Senescence and Crop Improvement.
    Ostrowska-Mazurek A; Kasprzak P; Kubala S; Zaborowska M; Sobieszczuk-Nowicka E
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32698545
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A reference methylome database and analysis pipeline to facilitate integrative and comparative epigenomics.
    Song Q; Decato B; Hong EE; Zhou M; Fang F; Qu J; Garvin T; Kessler M; Zhou J; Smith AD
    PLoS One; 2013; 8(12):e81148. PubMed ID: 24324667
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Opportunities to Use DNA Methylation to Distil Functional Elements in Large Crop Genomes.
    Crisp PA; Noshay JM; Anderson SN; Springer NM
    Mol Plant; 2019 Mar; 12(3):282-284. PubMed ID: 30797889
    [No Abstract]   [Full Text] [Related]  

  • 37. [Epigenetic variation and its application in crop improvement].
    Jing J; Qian Q; Bojun M; Zhenyu G
    Yi Chuan; 2014 May; 36(5):469-75. PubMed ID: 24846996
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Leafing through the genomes of our major crop plants: strategies for capturing unique information.
    Paterson AH
    Nat Rev Genet; 2006 Mar; 7(3):174-84. PubMed ID: 16485017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MethGo: a comprehensive tool for analyzing whole-genome bisulfite sequencing data.
    Liao WW; Yen MR; Ju E; Hsu FM; Lam L; Chen PY
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S11. PubMed ID: 26680022
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Epigenetics and epigenomics: underlying mechanisms, relevance, and implications in crop improvement.
    Agarwal G; Kudapa H; Ramalingam A; Choudhary D; Sinha P; Garg V; Singh VK; Patil GB; Pandey MK; Nguyen HT; Guo B; Sunkar R; Niederhuth CE; Varshney RK
    Funct Integr Genomics; 2020 Nov; 20(6):739-761. PubMed ID: 33089419
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.