BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 25639351)

  • 1. Evaluation of the bioactive properties of avenanthramide analogs produced in recombinant yeast.
    Moglia A; Goitre L; Gianoglio S; Baldini E; Trapani E; Genre A; Scattina A; Dondo G; Trabalzini L; Beekwilder J; Retta SF
    Biofactors; 2015; 41(1):15-27. PubMed ID: 25639351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast-Derived Recombinant Avenanthramides Inhibit Proliferation, Migration and Epithelial Mesenchymal Transition of Colon Cancer Cells.
    Finetti F; Moglia A; Schiavo I; Donnini S; Berta GN; Di Scipio F; Perrelli A; Fornelli C; Trabalzini L; Retta SF
    Nutrients; 2018 Aug; 10(9):. PubMed ID: 30149546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of novel antioxidative phenolic amides through heterologous expression of the plant's chlorogenic acid biosynthesis genes in yeast.
    Moglia A; Comino C; Lanteri S; de Vos R; de Waard P; van Beek TA; Goitre L; Retta SF; Beekwilder J
    Metab Eng; 2010 May; 12(3):223-32. PubMed ID: 19941969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological Activities, Health Benefits, and Therapeutic Properties of Avenanthramides: From Skin Protection to Prevention and Treatment of Cerebrovascular Diseases.
    Perrelli A; Goitre L; Salzano AM; Moglia A; Scaloni A; Retta SF
    Oxid Med Cell Longev; 2018; 2018():6015351. PubMed ID: 30245775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro antioxidant activity and antigenotoxic effects of avenanthramides and related compounds.
    Lee-Manion AM; Price RK; Strain JJ; Dimberg LH; Sunnerheim K; Welch RW
    J Agric Food Chem; 2009 Nov; 57(22):10619-24. PubMed ID: 19874025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oat germination and ultrafiltration process improves the polyphenol and avenanthramide contents with protective effect in oxidative-damaged HepG2 cells.
    Lee JH; Lee BK; Park HH; Lee BW; Woo KS; Kim HJ; Han SI; Lee YY
    J Food Biochem; 2019 Apr; 43(4):e12799. PubMed ID: 31353574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of avenanthramides in oat products and estimation of avenanthramide intake in humans.
    Pridal AA; Böttger W; Ross AB
    Food Chem; 2018 Jul; 253():93-100. PubMed ID: 29502849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of tranilast [N-(3',4'-dimethoxycinnamoyl)-anthranilic acid] and its analogs in yeast Saccharomyces cerevisiae.
    Eudes A; Baidoo EE; Yang F; Burd H; Hadi MZ; Collins FW; Keasling JD; Loqué D
    Appl Microbiol Biotechnol; 2011 Feb; 89(4):989-1000. PubMed ID: 20972784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaf parts from Greek artichoke genotypes as a good source of bioactive compounds and antioxidants.
    Petropoulos SA; Pereira C; Barros L; Ferreira ICFR
    Food Funct; 2017 May; 8(5):2022-2029. PubMed ID: 28492621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of chemical systemic acquired resistance elicitors on avenanthramide biosynthesis in oat (Avena sativa).
    Wise ML
    J Agric Food Chem; 2011 Jul; 59(13):7028-38. PubMed ID: 21598950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. KRIT1 regulates the homeostasis of intracellular reactive oxygen species.
    Goitre L; Balzac F; Degani S; Degan P; Marchi S; Pinton P; Retta SF
    PLoS One; 2010 Jul; 5(7):e11786. PubMed ID: 20668652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AMP-activated protein kinase mediates the antioxidant effects of resveratrol through regulation of the transcription factor FoxO1.
    Yun H; Park S; Kim MJ; Yang WK; Im DU; Yang KR; Hong J; Choe W; Kang I; Kim SS; Ha J
    FEBS J; 2014 Oct; 281(19):4421-38. PubMed ID: 25065674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional regulation of antioxidant enzymes by FoxO1 under dehydration stress.
    Malik AI; Storey KB
    Gene; 2011 Oct; 485(2):114-9. PubMed ID: 21708231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cigarette smoke extract induces changes in growth and gene expression of Saccharomyces cerevisiae.
    John L; Sharma G; Chaudhuri SP; Pillai B
    Biochem Biophys Res Commun; 2005 Dec; 338(3):1578-86. PubMed ID: 16289044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oat avenanthramide-C (2c) is biotransformed by mice and the human microbiota into bioactive metabolites.
    Wang P; Chen H; Zhu Y; McBride J; Fu J; Sang S
    J Nutr; 2015 Feb; 145(2):239-45. PubMed ID: 25644343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The antioxidant activity of artichoke (Cynara scolymus): A systematic review and meta-analysis of animal studies.
    Salekzamani S; Ebrahimi-Mameghani M; Rezazadeh K
    Phytother Res; 2019 Jan; 33(1):55-71. PubMed ID: 30345589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Avenanthramide, a polyphenol from oats, inhibits vascular smooth muscle cell proliferation and enhances nitric oxide production.
    Nie L; Wise ML; Peterson DM; Meydani M
    Atherosclerosis; 2006 Jun; 186(2):260-6. PubMed ID: 16139284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of avenanthramide phytoalexins in oats.
    Okazaki Y; Isobe T; Iwata Y; Matsukawa T; Matsuda F; Miyagawa H; Ishihara A; Nishioka T; Iwamura H
    Plant J; 2004 Aug; 39(4):560-72. PubMed ID: 15272874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Possible role of superoxide dismutases in the yeast Saccharomyces cerevisiae under respiratory conditions.
    Lushchak V; Semchyshyn H; Mandryk S; Lushchak O
    Arch Biochem Biophys; 2005 Sep; 441(1):35-40. PubMed ID: 16084798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and identification of chemical constituents from Origanum majorana and investigation of antiproliferative and antioxidant activities.
    Erenler R; Sen O; Aksit H; Demirtas I; Yaglioglu AS; Elmastas M; Telci İ
    J Sci Food Agric; 2016 Feb; 96(3):822-36. PubMed ID: 25721137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.