BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 25639891)

  • 1. Mechanism-based inactivation of CYP450 enzymes: a case study of lapatinib.
    Ho HK; Chan JC; Hardy KD; Chan EC
    Drug Metab Rev; 2015 Feb; 47(1):21-8. PubMed ID: 25639891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of lapatinib with cytochrome P450 3A5.
    Chan EC; New LS; Chua TB; Yap CW; Ho HK; Nelson SD
    Drug Metab Dispos; 2012 Jul; 40(7):1414-22. PubMed ID: 22511346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism-based inactivation of cytochrome P450 3A4 by lapatinib.
    Teng WC; Oh JW; New LS; Wahlin MD; Nelson SD; Ho HK; Chan EC
    Mol Pharmacol; 2010 Oct; 78(4):693-703. PubMed ID: 20624855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic intermediate complex formation of human cytochrome P450 3A4 by lapatinib.
    Takakusa H; Wahlin MD; Zhao C; Hanson KL; New LS; Chan EC; Nelson SD
    Drug Metab Dispos; 2011 Jun; 39(6):1022-30. PubMed ID: 21363997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolomics reveals the formation of aldehydes and iminium in gefitinib metabolism.
    Liu X; Lu Y; Guan X; Dong B; Chavan H; Wang J; Zhang Y; Krishnamurthy P; Li F
    Biochem Pharmacol; 2015 Sep; 97(1):111-21. PubMed ID: 26212543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism-dependent inhibition of CYP3A4 by lapatinib: evidence for formation of a metabolic intermediate complex with a nitroso/oxime metabolite formed via a nitrone intermediate.
    Barbara JE; Kazmi F; Parkinson A; Buckley DB
    Drug Metab Dispos; 2013 May; 41(5):1012-22. PubMed ID: 23404373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism-Based Inactivation of Cytochrome P450 3A4 by Benzbromarone.
    Tang LWT; Verma RK; Fan H; Chan ECY
    Mol Pharmacol; 2021 Apr; 99(4):266-276. PubMed ID: 33436520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of cytochrome P450 enzymes and biochemical aspects of mechanism-based inactivation (MBI).
    Kamel A; Harriman S
    Drug Discov Today Technol; 2013; 10(1):e177-89. PubMed ID: 24050247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Risk assessment for drug-drug interaction caused by metabolism-based inhibition of CYP3A using automated in vitro assay systems and its application in the early drug discovery process.
    Watanabe A; Nakamura K; Okudaira N; Okazaki O; Sudo K
    Drug Metab Dispos; 2007 Jul; 35(7):1232-8. PubMed ID: 17392390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism-based inactivation of CYP3A by HIV protease inhibitors.
    Ernest CS; Hall SD; Jones DR
    J Pharmacol Exp Ther; 2005 Feb; 312(2):583-91. PubMed ID: 15523003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic Activation of the Acrylamide Michael Acceptor Warhead in Futibatinib to an Epoxide Intermediate Engenders Covalent Inactivation of CYP3A.
    Tang LWT; Fu J; Koh SK; Wu G; Zhou L; Chan ECY
    Drug Metab Dispos; 2022 Jul; 50(7):931-941. PubMed ID: 35512804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential metabolism of gefitinib and erlotinib by human cytochrome P450 enzymes.
    Li J; Zhao M; He P; Hidalgo M; Baker SD
    Clin Cancer Res; 2007 Jun; 13(12):3731-7. PubMed ID: 17575239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human metabolism of lapatinib, a dual kinase inhibitor: implications for hepatotoxicity.
    Castellino S; O'Mara M; Koch K; Borts DJ; Bowers GD; MacLauchlin C
    Drug Metab Dispos; 2012 Jan; 40(1):139-50. PubMed ID: 21965624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro assessment of the photo(geno)toxicity associated with Lapatinib, a Tyrosine Kinase inhibitor.
    García-Lainez G; Vayá I; Marín MP; Miranda MA; Andreu I
    Arch Toxicol; 2021 Jan; 95(1):169-178. PubMed ID: 32815004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytochrome P450 inhibitory potential and RP-HPLC standardization of trikatu--a Rasayana from Indian Ayurveda.
    Harwansh RK; Mukherjee K; Bhadra S; Kar A; Bahadur S; Mitra A; Mukherjee PK
    J Ethnopharmacol; 2014 May; 153(3):674-81. PubMed ID: 24690772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro assessment of time-dependent inhibitory effects on CYP2C8 and CYP3A activity by fourteen protein kinase inhibitors.
    Filppula AM; Neuvonen PJ; Backman JT
    Drug Metab Dispos; 2014 Jul; 42(7):1202-9. PubMed ID: 24713129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of CYP3A5 attenuates inducibility and activity of CYP3A4 in HepG2 cells.
    Kuang Z; Huang Z; Li Y; Yang G; Liu M; Yuan H
    Mol Med Rep; 2015 Apr; 11(4):2868-74. PubMed ID: 25434721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism-based inactivation of cytochromes by furan epoxide: unraveling the molecular mechanism.
    Taxak N; Kalra S; Bharatam PV
    Inorg Chem; 2013 Dec; 52(23):13496-508. PubMed ID: 24236636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel in vitro approach for simultaneous evaluation of CYP3A4 inhibition and kinetic aqueous solubility.
    Pérez J; Díaz C; Asensio F; Palafox A; Genilloud O; Vicente F
    J Biomol Screen; 2015 Feb; 20(2):254-64. PubMed ID: 25296659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytochrome p450 architecture and cysteine nucleophile placement impact raloxifene-mediated mechanism-based inactivation.
    VandenBrink BM; Davis JA; Pearson JT; Foti RS; Wienkers LC; Rock DA
    Mol Pharmacol; 2012 Nov; 82(5):835-42. PubMed ID: 22859722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.