BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 25639891)

  • 21. The role of efflux and uptake transporters in [N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine (GW572016, lapatinib) disposition and drug interactions.
    Polli JW; Humphreys JE; Harmon KA; Castellino S; O'Mara MJ; Olson KL; John-Williams LS; Koch KM; Serabjit-Singh CJ
    Drug Metab Dispos; 2008 Apr; 36(4):695-701. PubMed ID: 18216274
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relative contributions of cytochrome CYP3A4 versus CYP3A5 for CYP3A-cleared drugs assessed in vitro using a CYP3A4-selective inactivator (CYP3cide).
    Tseng E; Walsky RL; Luzietti RA; Harris JJ; Kosa RE; Goosen TC; Zientek MA; Obach RS
    Drug Metab Dispos; 2014 Jul; 42(7):1163-73. PubMed ID: 24737844
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of a non-hepatic cell line highlights limitations associated with cell-based assessment of metabolically induced toxicity.
    Weyers C; Dingle LMK; Wilhelmi BS; Edkins AL; Veale CGL
    Drug Chem Toxicol; 2020 Nov; 43(6):656-662. PubMed ID: 30880486
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of Omeprazole on the Pharmacokinetics of Rosuvastatin in Healthy Male Volunteers.
    Shah Y; Iqbal Z; Ahmad L; Khuda F; Khan A; Khan A; Khan MI; Ismail
    Am J Ther; 2016; 23(6):e1514-e1523. PubMed ID: 25719441
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The involvement of hepatic cytochrome P450s in the cytotoxicity of lapatinib.
    Chen S; Li X; Li Y; He X; Bryant M; Qin X; Li F; Seo JE; Guo X; Mei N; Guo L
    Toxicol Sci; 2023 Dec; 197(1):69-78. PubMed ID: 37788138
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Mechanism-Based Inactivation of CYP3A4 by Ritonavir: What Mechanism?
    Loos NHC; Beijnen JH; Schinkel AH
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077262
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of Infigratinib as a Potent Reversible Inhibitor and Mechanism-Based Inactivator of CYP2J2: Nascent Evidence for a Potential In Vivo Metabolic Drug-Drug Interaction with Rivaroxaban.
    Tang LWT; Wu G; Chan ECY
    J Pharmacol Exp Ther; 2022 Aug; 382(2):123-134. PubMed ID: 35640957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Irreversible Enzyme Inhibition Kinetics and Drug-Drug Interactions.
    Mohutsky M; Hall SD
    Methods Mol Biol; 2021; 2342():51-88. PubMed ID: 34272691
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potential role of drug metabolizing enzymes in chemotherapy-induced gastrointestinal toxicity and hepatotoxicity.
    Tao G; Huang J; Moorthy B; Wang C; Hu M; Gao S; Ghose R
    Expert Opin Drug Metab Toxicol; 2020 Nov; 16(11):1109-1124. PubMed ID: 32841068
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interindividual Variation in CYP3A Activity Influences Lapatinib Bioactivation.
    Bissada JE; Truong V; Abouda AA; Wines KJ; Crouch RD; Jackson KD
    Drug Metab Dispos; 2019 Nov; 47(11):1257-1269. PubMed ID: 31492693
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of Cytochrome P450 Enzymes in the Metabolic Activation of Tyrosine Kinase Inhibitors.
    Jackson KD; Durandis R; Vergne MJ
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30103502
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cytochrome P450 3A4 and CYP3A5-Catalyzed Bioactivation of Lapatinib.
    Towles JK; Clark RN; Wahlin MD; Uttamsingh V; Rettie AE; Jackson KD
    Drug Metab Dispos; 2016 Oct; 44(10):1584-97. PubMed ID: 27450182
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combine and conquer: challenges for targeted therapy combinations in early phase trials.
    Lopez JS; Banerji U
    Nat Rev Clin Oncol; 2017 Jan; 14(1):57-66. PubMed ID: 27377132
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism-based inactivation of CYP450 enzymes: a case study of lapatinib.
    Ho HK; Chan JC; Hardy KD; Chan EC
    Drug Metab Rev; 2015 Feb; 47(1):21-8. PubMed ID: 25639891
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction of lapatinib with cytochrome P450 3A5.
    Chan EC; New LS; Chua TB; Yap CW; Ho HK; Nelson SD
    Drug Metab Dispos; 2012 Jul; 40(7):1414-22. PubMed ID: 22511346
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism-based inactivation of cytochrome P450 3A4 by lapatinib.
    Teng WC; Oh JW; New LS; Wahlin MD; Nelson SD; Ho HK; Chan EC
    Mol Pharmacol; 2010 Oct; 78(4):693-703. PubMed ID: 20624855
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic intermediate complex formation of human cytochrome P450 3A4 by lapatinib.
    Takakusa H; Wahlin MD; Zhao C; Hanson KL; New LS; Chan EC; Nelson SD
    Drug Metab Dispos; 2011 Jun; 39(6):1022-30. PubMed ID: 21363997
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibition of cytochrome P450 enzymes and biochemical aspects of mechanism-based inactivation (MBI).
    Kamel A; Harriman S
    Drug Discov Today Technol; 2013; 10(1):e177-89. PubMed ID: 24050247
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic activation of drugs by cytochrome P450 enzymes: Biochemical insights into mechanism-based inactivation by fibroblast growth factor receptor inhibitors and chemical approaches to attenuate reactive metabolite formation.
    Tang LWT; Chan ECY
    Biochem Pharmacol; 2022 Dec; 206():115336. PubMed ID: 36332675
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.