These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 25640045)

  • 1. Stereochemistry of enzymatic water addition to C=C bonds.
    Chen BS; Otten LG; Hanefeld U
    Biotechnol Adv; 2015; 33(5):526-46. PubMed ID: 25640045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the current role of hydratases in biocatalysis.
    Engleder M; Pichler H
    Appl Microbiol Biotechnol; 2018 Jul; 102(14):5841-5858. PubMed ID: 29785499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The selective addition of water to C=C bonds; enzymes are the best chemists.
    Jin J; Hanefeld U
    Chem Commun (Camb); 2011 Mar; 47(9):2502-10. PubMed ID: 21243161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of historical contingency in the stereochemistry of hydratase-dehydratase enzymes.
    Mohrig JR; Moerke KA; Cloutier DL; Lane BD; Person EC; Onasch TB
    Science; 1995 Jul; 269(5223):527-9. PubMed ID: 7624773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. (De)hydratases-recent developments and future perspectives.
    Demming RM; Fischer MP; Schmid J; Hauer B
    Curr Opin Chem Biol; 2018 Apr; 43():43-50. PubMed ID: 29156448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolving the Promiscuity of Elizabethkingia meningoseptica Oleate Hydratase for the Regio- and Stereoselective Hydration of Oleic Acid Derivatives.
    Engleder M; Strohmeier GA; Weber H; Steinkellner G; Leitner E; Müller M; Mink D; Schürmann M; Gruber K; Pichler H
    Angew Chem Int Ed Engl; 2019 May; 58(22):7480-7484. PubMed ID: 30848865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The complete stereochemistry of the enzymatic dehydration of 4-hydroxybutyryl coenzyme A to crotonyl coenzyme A.
    Friedrich P; Darley DJ; Golding BT; Buckel W
    Angew Chem Int Ed Engl; 2008; 47(17):3254-7. PubMed ID: 18348126
    [No Abstract]   [Full Text] [Related]  

  • 8. A stereoselective cobalt-containing nitrile hydratase.
    Payne MS; Wu S; Fallon RD; Tudor G; Stieglitz B; Turner IM; Nelson MJ
    Biochemistry; 1997 May; 36(18):5447-54. PubMed ID: 9154927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear magnetic resonance assignment of the vinyl hydrogens of phosphoenolpyruvate. Stereochemistry of the enolase reaction.
    Cohn M; Pearson JE; O'Connell EL; Rose IA
    J Am Chem Soc; 1970 Jul; 92(13):4095-8. PubMed ID: 5419048
    [No Abstract]   [Full Text] [Related]  

  • 10. Structure-Based Mechanism of Oleate Hydratase from Elizabethkingia meningoseptica.
    Engleder M; Pavkov-Keller T; Emmerstorfer A; Hromic A; Schrempf S; Steinkellner G; Wriessnegger T; Leitner E; Strohmeier GA; Kaluzna I; Mink D; Schürmann M; Wallner S; Macheroux P; Gruber K; Pichler H
    Chembiochem; 2015 Aug; 16(12):1730-4. PubMed ID: 26077980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel oleate hydratases and potential biotechnological applications.
    Hagedoorn PL; Hollmann F; Hanefeld U
    Appl Microbiol Biotechnol; 2021 Aug; 105(16-17):6159-6172. PubMed ID: 34350478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic functionalization of carbon-hydrogen bonds.
    Lewis JC; Coelho PS; Arnold FH
    Chem Soc Rev; 2011 Apr; 40(4):2003-21. PubMed ID: 21079862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of cobalt substitution on the activity of iron-type nitrile hydratase: are cobalt type nitrile hydratases regulated by carbon monoxide?
    Sari MA; Jaouen M; Saroja NR; Artaud I
    J Inorg Biochem; 2007 Apr; 101(4):614-22. PubMed ID: 17267045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards an understanding of oleate hydratases and their application in industrial processes.
    Prem S; Helmer CPO; Dimos N; Himpich S; Brück T; Garbe D; Loll B
    Microb Cell Fact; 2022 Apr; 21(1):58. PubMed ID: 35397585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The potential of lyases for the industrial production of optically active compounds.
    van der Werf MJ; van den Tweel WJ; Kamphuis J; Hartmans S; de Bont JA
    Trends Biotechnol; 1994 Mar; 12(3):95-103. PubMed ID: 7764830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tertiary and quaternary structures of photoreactive Fe-type nitrile hydratase from Rhodococcus sp. N-771: roles of hydration water molecules in stabilizing the structures and the structural origin of the substrate specificity of the enzyme.
    Nakasako M; Odaka M; Yohda M; Dohmae N; Takio K; Kamiya N; Endo I
    Biochemistry; 1999 Aug; 38(31):9887-98. PubMed ID: 10433695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MhyADH catalysed Michael addition of water and in situ oxidation.
    Jin J; Oskam PC; Karmee SK; Straathof AJ; Hanefeld U
    Chem Commun (Camb); 2010 Dec; 46(45):8588-90. PubMed ID: 20871891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stereochemistry of the dTDP-glucose oxidoreductase reaction.
    Snipes CE; Brillinger GU; Sellers L; Mascaro L; Floss HG
    J Biol Chem; 1977 Nov; 252(22):8113-7. PubMed ID: 334773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of catalytically important residues of the carotenoid 1,2-hydratases from Rubrivivax gelatinosus and Thiocapsa roseopersicina.
    Hiseni A; Otten LG; Arends IWCE
    Appl Microbiol Biotechnol; 2016 Feb; 100(3):1275-1284. PubMed ID: 26481619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrile hydratases (NHases): at the interface of academia and industry.
    Prasad S; Bhalla TC
    Biotechnol Adv; 2010; 28(6):725-41. PubMed ID: 20685247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.