These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 25640132)
1. Fast and sensitive detection of protein concentration in mild environments. Wang C; Zhou Y; Zhang KX; Nie XG; Xia XH Talanta; 2015 Apr; 135():102-7. PubMed ID: 25640132 [TBL] [Abstract][Full Text] [Related]
2. Ultrasensitive protein concentration detection on a micro/nanofluidic enrichment chip using fluorescence quenching. Wang C; Shi Y; Wang J; Pang J; Xia XH ACS Appl Mater Interfaces; 2015 Apr; 7(12):6835-41. PubMed ID: 25775007 [TBL] [Abstract][Full Text] [Related]
3. Ultrasensitive protein concentration measurement based on particle adsorption and fluorescence quenching. Pihlasalo S; Kirjavainen J; Hänninen P; Härmä H Anal Chem; 2009 Jun; 81(12):4995-5000. PubMed ID: 19453161 [TBL] [Abstract][Full Text] [Related]
4. Adsorption and conformation of serum albumin protein on gold nanoparticles investigated using dimensional measurements and in situ spectroscopic methods. Tsai DH; DelRio FW; Keene AM; Tyner KM; MacCuspie RI; Cho TJ; Zachariah MR; Hackley VA Langmuir; 2011 Mar; 27(6):2464-77. PubMed ID: 21341776 [TBL] [Abstract][Full Text] [Related]
5. Gold nanoparticles-based fluorescence resonance energy transfer for competitive immunoassay of biomolecules. Chen J; Huang Y; Zhao S; Lu X; Tian J Analyst; 2012 Dec; 137(24):5885-90. PubMed ID: 23120746 [TBL] [Abstract][Full Text] [Related]
6. Convenient and ultra-sensitive fluorescence detection of bovine serum albumin by using Rhodamine-6G modified gold nanoparticles in biological samples. Verma VK; Tapadia K; Maharana T; Sharma A Luminescence; 2018 Dec; 33(8):1408-1414. PubMed ID: 30362269 [TBL] [Abstract][Full Text] [Related]
7. A novel label-free upconversion fluorescence resonance energy transfer-nanosensor for ultrasensitive detection of protamine and heparin. Long Q; Zhao J; Yin B; Li H; Zhang Y; Yao S Anal Biochem; 2015 May; 477():28-34. PubMed ID: 25721409 [TBL] [Abstract][Full Text] [Related]
8. Fluorescence turn-on detection of iodide, iodate and total iodine using fluorescein-5-isothiocyanate-modified gold nanoparticles. Chen YM; Cheng TL; Tseng WL Analyst; 2009 Oct; 134(10):2106-12. PubMed ID: 19768221 [TBL] [Abstract][Full Text] [Related]
9. Gold nanoparticle-enzyme conjugates based FRET for highly sensitive determination of hydrogen peroxide, glucose and uric acid using tyramide reaction. Huang X; Lan T; Zhang B; Ren J Analyst; 2012 Aug; 137(16):3659-66. PubMed ID: 22745932 [TBL] [Abstract][Full Text] [Related]
10. One-step facile synthesis of hyaluronic acid functionalized fluorescent gold nanoprobes sensitive to hyaluronidase in urine specimen from bladder cancer patients. Cheng D; Han W; Yang K; Song Y; Jiang M; Song E Talanta; 2014 Dec; 130():408-14. PubMed ID: 25159428 [TBL] [Abstract][Full Text] [Related]
11. Gold Nanocluster-Assisted Fluorescent Detection for Hydrogen Peroxide and Cholesterol Based on the Inner Filter Effect of Gold Nanoparticles. Chang HC; Ho JA Anal Chem; 2015 Oct; 87(20):10362-7. PubMed ID: 26379119 [TBL] [Abstract][Full Text] [Related]
12. Resonance scattering amplification assay of biomolecules based on the biomineralization of gold nanoparticles bioconjugates. Liu Z; Luo L; Dong Y; Weng G; Li J J Colloid Interface Sci; 2011 Nov; 363(1):182-6. PubMed ID: 21851949 [TBL] [Abstract][Full Text] [Related]
13. Label-free detection of adenosine based on fluorescence resonance energy transfer between fluorescent silica nanoparticles and unmodified gold nanoparticles. Qiang W; Liu H; Li W; Chen X; Xu D Anal Chim Acta; 2014 May; 828():92-8. PubMed ID: 24845820 [TBL] [Abstract][Full Text] [Related]
14. Selective and sensitive detection of free bilirubin in blood serum using human serum albumin stabilized gold nanoclusters as fluorometric and colorimetric probe. Santhosh M; Chinnadayyala SR; Kakoti A; Goswami P Biosens Bioelectron; 2014 Sep; 59():370-6. PubMed ID: 24752148 [TBL] [Abstract][Full Text] [Related]
15. Quenching effect of nickel ions on fluorescent gold nanoparticles. Zheng HZ; Liu L; Zhang ZJ; Huang YM; Zhou DB; Hao JY; Lu YH; Chen SM Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jan; 71(5):1795-8. PubMed ID: 18715824 [TBL] [Abstract][Full Text] [Related]
16. Quantitative determination of competitive molecular adsorption on gold nanoparticles using attenuated total reflectance-Fourier transform infrared spectroscopy. Tsai DH; Davila-Morris M; DelRio FW; Guha S; Zachariah MR; Hackley VA Langmuir; 2011 Aug; 27(15):9302-13. PubMed ID: 21726083 [TBL] [Abstract][Full Text] [Related]
17. Improving sensitivity of gold nanoparticle based fluorescence quenching and colorimetric aptasensor by using water resuspended gold nanoparticle. Liu J; Guan Z; Lv Z; Jiang X; Yang S; Chen A Biosens Bioelectron; 2014 Feb; 52():265-70. PubMed ID: 24064475 [TBL] [Abstract][Full Text] [Related]
18. Multidimensional sensor for pattern recognition of proteins based on DNA-gold nanoparticles conjugates. Sun W; Lu Y; Mao J; Chang N; Yang J; Liu Y Anal Chem; 2015 Mar; 87(6):3354-9. PubMed ID: 25673351 [TBL] [Abstract][Full Text] [Related]
19. Highly sensitive turn-on fluorescence detection of thrombomodulin based on fluorescence resonance energy transfer. Kong L; Zhu J; Wang W; Jin L; Fu Y; Duan B; Tan L Spectrochim Acta A Mol Biomol Spectrosc; 2017 Feb; 173():675-680. PubMed ID: 27780127 [TBL] [Abstract][Full Text] [Related]
20. Fluorescent detection of protein kinase based on positively charged gold nanoparticles. Lu G; Tan P; Lei C; Nie Z; Huang Y; Yao S Talanta; 2014 Oct; 128():360-5. PubMed ID: 25059172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]