These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 25640220)
41. Robust coupling of angiogenesis and osteogenesis by VEGF-decorated matrices for bone regeneration. Burger MG; Grosso A; Briquez PS; Born GME; Lunger A; Schrenk F; Todorov A; Sacchi V; Hubbell JA; Schaefer DJ; Banfi A; Di Maggio N Acta Biomater; 2022 Sep; 149():111-125. PubMed ID: 35835287 [TBL] [Abstract][Full Text] [Related]
42. Melatonin Accelerates Osteoporotic Bone Defect Repair by Promoting Osteogenesis-Angiogenesis Coupling. Zheng S; Zhou C; Yang H; Li J; Feng Z; Liao L; Li Y Front Endocrinol (Lausanne); 2022; 13():826660. PubMed ID: 35273570 [TBL] [Abstract][Full Text] [Related]
43. Angiogenesis involvement by octacalcium phosphate-gelatin composite-driven bone regeneration in rat calvaria critical-sized defect. Kurobane T; Shiwaku Y; Anada T; Hamai R; Tsuchiya K; Baba K; Iikubo M; Takahashi T; Suzuki O Acta Biomater; 2019 Apr; 88():514-526. PubMed ID: 30776505 [TBL] [Abstract][Full Text] [Related]
44. Fucoidan-induced osteogenic differentiation promotes angiogenesis by inducing vascular endothelial growth factor secretion and accelerates bone repair. Kim BS; Yang SS; You HK; Shin HI; Lee J J Tissue Eng Regen Med; 2018 Mar; 12(3):e1311-e1324. PubMed ID: 28714275 [TBL] [Abstract][Full Text] [Related]
45. Zinc Silicate/Nano-Hydroxyapatite/Collagen Scaffolds Promote Angiogenesis and Bone Regeneration via the p38 MAPK Pathway in Activated Monocytes. Song Y; Wu H; Gao Y; Li J; Lin K; Liu B; Lei X; Cheng P; Zhang S; Wang Y; Sun J; Bi L; Pei G ACS Appl Mater Interfaces; 2020 Apr; 12(14):16058-16075. PubMed ID: 32182418 [TBL] [Abstract][Full Text] [Related]
46. Conditioned media from mesenchymal stromal cells and periodontal ligament fibroblasts under cyclic stretch stimulation promote bone healing in mouse calvarial defects. Ogisu K; Fujio M; Tsuchiya S; Tsuboi M; Qi C; Toyama N; Kamio H; Hibi H Cytotherapy; 2020 Oct; 22(10):543-551. PubMed ID: 32798177 [TBL] [Abstract][Full Text] [Related]
47. NAD(P)H autofluorescence lifetime imaging enables single cell analyses of cellular metabolism of osteoblasts in vitro and in vivo via two-photon microscopy. Schilling K; Brown E; Zhang X Bone; 2022 Jan; 154():116257. PubMed ID: 34781049 [TBL] [Abstract][Full Text] [Related]
48. Gadolinium-doped bioglass scaffolds promote osteogenic differentiation of hBMSC via the Akt/GSK3β pathway and facilitate bone repair in vivo. Zhu DY; Lu B; Yin JH; Ke QF; Xu H; Zhang CQ; Guo YP; Gao YS Int J Nanomedicine; 2019; 14():1085-1100. PubMed ID: 30804672 [TBL] [Abstract][Full Text] [Related]
49. The combinatory effect of sinusoidal electromagnetic field and VEGF promotes osteogenesis and angiogenesis of mesenchymal stem cell-laden PCL/HA implants in a rat subcritical cranial defect. Chen J; Tu C; Tang X; Li H; Yan J; Ma Y; Wu H; Liu C Stem Cell Res Ther; 2019 Dec; 10(1):379. PubMed ID: 31842985 [TBL] [Abstract][Full Text] [Related]
50. Visualizing osteogenesis in vivo within a cell-scaffold construct for bone tissue engineering using two-photon microscopy. Villa MM; Wang L; Huang J; Rowe DW; Wei M Tissue Eng Part C Methods; 2013 Nov; 19(11):839-49. PubMed ID: 23641794 [TBL] [Abstract][Full Text] [Related]
51. BMPER Enhances Bone Formation by Promoting the Osteogenesis-Angiogenesis Coupling Process in Mesenchymal Stem Cells. Xiao F; Wang C; Wang C; Gao Y; Zhang X; Chen X Cell Physiol Biochem; 2018; 45(5):1927-1939. PubMed ID: 29518774 [TBL] [Abstract][Full Text] [Related]
52. The promotion of bone regeneration through positive regulation of angiogenic-osteogenic coupling using microRNA-26a. Li Y; Fan L; Liu S; Liu W; Zhang H; Zhou T; Wu D; Yang P; Shen L; Chen J; Jin Y Biomaterials; 2013 Jul; 34(21):5048-58. PubMed ID: 23578559 [TBL] [Abstract][Full Text] [Related]
53. A Chemotactic Functional Scaffold with VEGF-Releasing Peptide Amphiphiles Facilitates Bone Regeneration by BMP-2 in a Large-Scale Rodent Cranial Defect Model. Bakshi R; Hokugo A; Khalil D; Wang L; Shibuya Y; Zhou S; Zhang Z; Rezzadeh K; McClendon M; Stupp SI; Jarrahy R Plast Reconstr Surg; 2021 Feb; 147(2):386-397. PubMed ID: 33235044 [TBL] [Abstract][Full Text] [Related]
54. The effects of different vascular carrier patterns on the angiogenesis and osteogenesis of BMSC-TCP-based tissue-engineered bone in beagle dogs. Wu X; Wang Q; Kang N; Wu J; Gu C; Bi J; Lv T; Xie F; Hu J; Liu X; Cao Y; Xiao R J Tissue Eng Regen Med; 2017 Feb; 11(2):542-552. PubMed ID: 26251084 [TBL] [Abstract][Full Text] [Related]
55. Developmental-like bone regeneration by human embryonic stem cell-derived mesenchymal cells. Kuhn LT; Liu Y; Boyd NL; Dennis JE; Jiang X; Xin X; Charles LF; Wang L; Aguila HL; Rowe DW; Lichtler AC; Goldberg AJ Tissue Eng Part A; 2014 Jan; 20(1-2):365-77. PubMed ID: 23952622 [TBL] [Abstract][Full Text] [Related]
56. A sericin/ graphene oxide composite scaffold as a biomimetic extracellular matrix for structural and functional repair of calvarial bone. Qi C; Deng Y; Xu L; Yang C; Zhu Y; Wang G; Wang Z; Wang L Theranostics; 2020; 10(2):741-756. PubMed ID: 31903148 [TBL] [Abstract][Full Text] [Related]
57. The effect of fresh bone marrow cells on reconstruction of mouse calvarial defect combined with calvarial osteoprogenitor cells and collagen-apatite scaffold. Yu X; Wang L; Peng F; Jiang X; Xia Z; Huang J; Rowe D; Wei M J Tissue Eng Regen Med; 2013 Dec; 7(12):974-83. PubMed ID: 22473786 [TBL] [Abstract][Full Text] [Related]
58. Evaluation of osteogenic cell differentiation in response to bone morphogenetic protein or demineralized bone matrix in a critical sized defect model using GFP reporter mice. Alaee F; Hong SH; Dukas AG; Pensak MJ; Rowe DW; Lieberman JR J Orthop Res; 2014 Sep; 32(9):1120-8. PubMed ID: 24888702 [TBL] [Abstract][Full Text] [Related]
59. Curcumin-mediated bone marrow mesenchymal stem cell sheets create a favorable immune microenvironment for adult full-thickness cutaneous wound healing. Yang Z; He C; He J; Chu J; Liu H; Deng X Stem Cell Res Ther; 2018 Jan; 9(1):21. PubMed ID: 29386050 [TBL] [Abstract][Full Text] [Related]
60. Preformed Vascular Networks Survive and Enhance Vascularization in Critical Sized Cranial Defects. Roux BM; Akar B; Zhou W; Stojkova K; Barrera B; Brankov J; Brey EM Tissue Eng Part A; 2018 Nov; 24(21-22):1603-1615. PubMed ID: 30019616 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]