These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 25640309)
1. Systematic identification of molecular links between core and candidate genes in breast cancer. Arroyo R; Suñé G; Zanzoni A; Duran-Frigola M; Alcalde V; Stracker TH; Soler-López M; Aloy P J Mol Biol; 2015 Mar; 427(6 Pt B):1436-1450. PubMed ID: 25640309 [TBL] [Abstract][Full Text] [Related]
2. Identification of breast cancer candidate genes using gene co-expression and protein-protein interaction information. Yue Z; Li HT; Yang Y; Hussain S; Zheng CH; Xia J; Chen Y Oncotarget; 2016 Jun; 7(24):36092-36100. PubMed ID: 27150055 [TBL] [Abstract][Full Text] [Related]
3. Comparative analysis of protein interactome networks prioritizes candidate genes with cancer signatures. Li Y; Sahni N; Yi S Oncotarget; 2016 Nov; 7(48):78841-78849. PubMed ID: 27791983 [TBL] [Abstract][Full Text] [Related]
4. Molecular-level effects of eribulin and paclitaxel on breast cancer based on differential co-expression network analysis. Qin J; Chen YH Genet Mol Res; 2016 Jul; 15(2):. PubMed ID: 27420999 [TBL] [Abstract][Full Text] [Related]
5. PPIXpress: construction of condition-specific protein interaction networks based on transcript expression. Will T; Helms V Bioinformatics; 2016 Feb; 32(4):571-8. PubMed ID: 26508756 [TBL] [Abstract][Full Text] [Related]
6. Network topology measures for identifying disease-gene association in breast cancer. Ramadan E; Alinsaif S; Hassan MR BMC Bioinformatics; 2016 Jul; 17 Suppl 7(Suppl 7):274. PubMed ID: 27454166 [TBL] [Abstract][Full Text] [Related]
7. Molecular Biology Networks and Key Gene Regulators for Inflammatory Biomarkers Shared by Breast Cancer Development: Multi-Omics Systems Analysis. Jung SY; Papp JC; Pellegrini M; Yu H; Sobel EM Biomolecules; 2021 Sep; 11(9):. PubMed ID: 34572592 [TBL] [Abstract][Full Text] [Related]
8. A network-based approach to identify disease-associated gene modules through integrating DNA methylation and gene expression. Zhang Y; Zhang J; Liu Z; Liu Y; Tuo S Biochem Biophys Res Commun; 2015 Sep; 465(3):437-42. PubMed ID: 26282201 [TBL] [Abstract][Full Text] [Related]
10. Competing endogenous RNA network analysis identifies critical genes among the different breast cancer subtypes. Chen J; Xu J; Li Y; Zhang J; Chen H; Lu J; Wang Z; Zhao X; Xu K; Li Y; Li X; Zhang Y Oncotarget; 2017 Feb; 8(6):10171-10184. PubMed ID: 28052038 [TBL] [Abstract][Full Text] [Related]
11. Convergence and divergence of genetic and modular networks between diabetes and breast cancer. Zhang X; Zhang Y; Yu Y; Liu J; Yuan Y; Zhao Y; Li H; Wang J; Wang Z J Cell Mol Med; 2015 May; 19(5):1094-102. PubMed ID: 25752479 [TBL] [Abstract][Full Text] [Related]
12. An Integrative Approach for Identifying Network Biomarkers of Breast Cancer Subtypes Using Genomic, Interactomic, and Transcriptomic Data. Firoozbakht F; Rezaeian I; D'agnillo M; Porter L; Rueda L; Ngom A J Comput Biol; 2017 Aug; 24(8):756-766. PubMed ID: 28650678 [TBL] [Abstract][Full Text] [Related]
13. Protein interaction disruption in cancer. Ruffalo M; Bar-Joseph Z BMC Cancer; 2019 Apr; 19(1):370. PubMed ID: 31014259 [TBL] [Abstract][Full Text] [Related]
14. Molecular mechanisms associated with breast cancer based on integrated gene expression profiling by bioinformatics analysis. Wu D; Han B; Guo L; Fan Z J Obstet Gynaecol; 2016 Jul; 36(5):615-21. PubMed ID: 26804550 [TBL] [Abstract][Full Text] [Related]
15. Highly informative marker sets consisting of genes with low individual degree of differential expression. Galatenko VV; Shkurnikov MY; Samatov TR; Galatenko AV; Mityakina IA; Kaprin AD; Schumacher U; Tonevitsky AG Sci Rep; 2015 Oct; 5():14967. PubMed ID: 26446398 [TBL] [Abstract][Full Text] [Related]
16. Identification of novel biomarkers associated with poor patient outcomes in invasive breast carcinoma. Canevari RA; Marchi FA; Domingues MA; de Andrade VP; Caldeira JR; Verjovski-Almeida S; Rogatto SR; Reis EM Tumour Biol; 2016 Oct; 37(10):13855-13870. PubMed ID: 27485113 [TBL] [Abstract][Full Text] [Related]
17. Network Meta-Analysis on the Effects of DNA Damage Response-Related Gene Mutations on Overall Survival of Breast Cancer Based on TCGA Database. Liu C; Chang H; Li XH; Qi YF; Wang JO; Zhang Y; Yang XH J Cell Biochem; 2017 Dec; 118(12):4728-4734. PubMed ID: 28513990 [TBL] [Abstract][Full Text] [Related]
18. BMRF-MI: integrative identification of protein interaction network by modeling the gene dependency. Shi X; Wang X; Shajahan A; Hilakivi-Clarke L; Clarke R; Xuan J BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S10. PubMed ID: 26099273 [TBL] [Abstract][Full Text] [Related]
19. Identification of novel dysregulated key genes in Breast cancer through high throughput ChIP-Seq data analysis. Raj U; Aier I; Semwal R; Varadwaj PK Sci Rep; 2017 Jun; 7(1):3229. PubMed ID: 28607444 [TBL] [Abstract][Full Text] [Related]
20. High-throughput «Omics» technologies: New tools for the study of triple-negative breast cancer. Judes G; Rifaï K; Daures M; Dubois L; Bignon YJ; Penault-Llorca F; Bernard-Gallon D Cancer Lett; 2016 Nov; 382(1):77-85. PubMed ID: 26965997 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]