These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 25640441)
1. Electrofusion of giant unilamellar vesicles to cells. Raz-Ben Aroush D; Yehudai-Resheff S; Keren K Methods Cell Biol; 2015; 125():409-22. PubMed ID: 25640441 [TBL] [Abstract][Full Text] [Related]
2. Probability and kinetics of rupture and electrofusion in giant unilamellar vesicles under various frequencies of direct current pulses. Bhuiyan MTI; Karal MAS; Orchi US; Ahmed N; Moniruzzaman M; Ahamed MK; Billah MM PLoS One; 2024; 19(6):e0304345. PubMed ID: 38857287 [TBL] [Abstract][Full Text] [Related]
3. Lipid vesicles in pulsed electric fields: Fundamental principles of the membrane response and its biomedical applications. Perrier DL; Rems L; Boukany PE Adv Colloid Interface Sci; 2017 Nov; 249():248-271. PubMed ID: 28499600 [TBL] [Abstract][Full Text] [Related]
4. Confocal microscopic observation of fusion between baculovirus budded virus envelopes and single giant unilamellar vesicles. Kamiya K; Kobayashi J; Yoshimura T; Tsumoto K Biochim Biophys Acta; 2010 Sep; 1798(9):1625-31. PubMed ID: 20493165 [TBL] [Abstract][Full Text] [Related]
5. Effects of electrically-induced constant tension on giant unilamellar vesicles using irreversible electroporation. Karal MAS; Ahamed MK; Rahman M; Ahmed M; Shakil MM; Siddique-E-Rabbani K Eur Biophys J; 2019 Dec; 48(8):731-741. PubMed ID: 31552440 [TBL] [Abstract][Full Text] [Related]
6. A membrane filtering method for the purification of giant unilamellar vesicles. Tamba Y; Terashima H; Yamazaki M Chem Phys Lipids; 2011 Jul; 164(5):351-8. PubMed ID: 21524642 [TBL] [Abstract][Full Text] [Related]
7. Electroformation of giant unilamellar vesicles from erythrocyte membranes under low-salt conditions. Mikelj M; Praper T; Demič R; Hodnik V; Turk T; Anderluh G Anal Biochem; 2013 Apr; 435(2):174-80. PubMed ID: 23333270 [TBL] [Abstract][Full Text] [Related]
8. Point-to-Plane Nonhomogeneous Electric-Field-Induced Simultaneous Formation of Giant Unilamellar Vesicles (GUVs) and Lipid Tubes. Zhu C; Zhang Y; Wang Y; Li Q; Mu W; Han X Chemistry; 2016 Feb; 22(9):2906-9. PubMed ID: 26756162 [TBL] [Abstract][Full Text] [Related]
9. Controllable electrofusion of lipid vesicles: initiation and analysis of reactions within biomimetic containers. Robinson T; Verboket PE; Eyer K; Dittrich PS Lab Chip; 2014 Aug; 14(15):2852-9. PubMed ID: 24911345 [TBL] [Abstract][Full Text] [Related]
10. Response of an actin network in vesicles under electric pulses. Perrier DL; Vahid A; Kathavi V; Stam L; Rems L; Mulla Y; Muralidharan A; Koenderink GH; Kreutzer MT; Boukany PE Sci Rep; 2019 May; 9(1):8151. PubMed ID: 31148577 [TBL] [Abstract][Full Text] [Related]
11. Giant unilamellar vesicles formed by hybrid films of agarose and lipids display altered mechanical properties. Lira RB; Dimova R; Riske KA Biophys J; 2014 Oct; 107(7):1609-19. PubMed ID: 25296313 [TBL] [Abstract][Full Text] [Related]
12. Electroformation of giant unilamellar vesicles from native membranes and organic lipid mixtures for the study of lipid domains under physiological ionic-strength conditions. Montes LR; Ahyayauch H; Ibarguren M; Sot J; Alonso A; Bagatolli LA; Goñi FM Methods Mol Biol; 2010; 606():105-14. PubMed ID: 20013393 [TBL] [Abstract][Full Text] [Related]
13. Kinetics of irreversible pore formation under constant electrical tension in giant unilamellar vesicles. Ahamed MK; Karal MAS; Ahmed M; Ahammed S Eur Biophys J; 2020 Jul; 49(5):371-381. PubMed ID: 32494845 [TBL] [Abstract][Full Text] [Related]
14. Influence of cholesterol on electroporation in lipid membranes of giant vesicles. Karal MAS; Ahamed MK; Mokta NA; Ahmed M; Ahammed S Eur Biophys J; 2020 Jul; 49(5):361-370. PubMed ID: 32535676 [TBL] [Abstract][Full Text] [Related]
15. Integrin-Functionalised Giant Unilamellar Vesicles via Gel-Assisted Formation: Good Practices and Pitfalls. Souissi M; Pernier J; Rossier O; Giannone G; Le Clainche C; Helfer E; Sengupta K Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34199292 [TBL] [Abstract][Full Text] [Related]
16. Effects of sugar concentration on the electroporation, size distribution and average size of charged giant unilamellar vesicles. Sarkar MK; Karal MAS; Levadny V; Belaya M; Ahmed M; Ahamed MK; Ahammed S Eur Biophys J; 2022 Jul; 51(4-5):401-412. PubMed ID: 35716178 [TBL] [Abstract][Full Text] [Related]
17. An investigation into the critical tension of electroporation in anionic lipid vesicles. Karal MAS; Ahamed MK; Orchi US; Towhiduzzaman M; Ahmed M; Ahammed S; Mokta NA; Ullah MS Eur Biophys J; 2021 Jan; 50(1):99-106. PubMed ID: 33245397 [TBL] [Abstract][Full Text] [Related]
18. Introducing micrometer-sized artificial objects into live cells: a method for cell-giant unilamellar vesicle electrofusion. Saito AC; Ogura T; Fujiwara K; Murata S; Nomura SM PLoS One; 2014; 9(9):e106853. PubMed ID: 25229561 [TBL] [Abstract][Full Text] [Related]
19. Size control of giant unilamellar vesicles prepared from inverted emulsion droplets. Nishimura K; Suzuki H; Toyota T; Yomo T J Colloid Interface Sci; 2012 Jun; 376(1):119-25. PubMed ID: 22444482 [TBL] [Abstract][Full Text] [Related]
20. Effects of osmotic pressure on the irreversible electroporation in giant lipid vesicles. Sarkar MK; Karal MAS; Ahmed M; Ahamed MK; Ahammed S; Sharmin S; Shibly SUA PLoS One; 2021; 16(5):e0251690. PubMed ID: 33989363 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]