These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 25640806)
1. NIRS-based classification of clench force and speed motor imagery with the use of empirical mode decomposition for BCI. Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G Med Eng Phys; 2015 Mar; 37(3):280-6. PubMed ID: 25640806 [TBL] [Abstract][Full Text] [Related]
2. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching. Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118 [TBL] [Abstract][Full Text] [Related]
3. A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery. Koo B; Lee HG; Nam Y; Kang H; Koh CS; Shin HC; Choi S J Neurosci Methods; 2015 Apr; 244():26-32. PubMed ID: 24797225 [TBL] [Abstract][Full Text] [Related]
4. Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface. Sitaram R; Zhang H; Guan C; Thulasidas M; Hoshi Y; Ishikawa A; Shimizu K; Birbaumer N Neuroimage; 2007 Feb; 34(4):1416-27. PubMed ID: 17196832 [TBL] [Abstract][Full Text] [Related]
5. Quantifying mode mixing and leakage in multivariate empirical mode decomposition and application in motor imagery-based brain-computer interface system. Zheng Y; Xu G Med Biol Eng Comput; 2019 Jun; 57(6):1297-1311. PubMed ID: 30737625 [TBL] [Abstract][Full Text] [Related]
6. Classification of hemodynamic responses associated with force and speed imagery for a brain-computer interface. Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G J Med Syst; 2015 May; 39(5):53. PubMed ID: 25732084 [TBL] [Abstract][Full Text] [Related]
7. Novel use of Empirical Mode Decomposition in single-trial classification of motor imagery for use in brain-computer interfaces. Davies SR; James CJ Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5610-3. PubMed ID: 24111009 [TBL] [Abstract][Full Text] [Related]
8. Dynamic topographical pattern classification of multichannel prefrontal NIRS signals: II. Online differentiation of mental arithmetic and rest. Schudlo LC; Chau T J Neural Eng; 2014 Feb; 11(1):016003. PubMed ID: 24311057 [TBL] [Abstract][Full Text] [Related]
9. A flexible analytic wavelet transform based approach for motor-imagery tasks classification in BCI applications. Chaudhary S; Taran S; Bajaj V; Siuly S Comput Methods Programs Biomed; 2020 Apr; 187():105325. PubMed ID: 31964514 [TBL] [Abstract][Full Text] [Related]
11. [Research of movement imagery EEG based on Hilbert-Huang transform and BP neural network]. Jin H; Zhang Z Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Apr; 30(2):249-53. PubMed ID: 23858742 [TBL] [Abstract][Full Text] [Related]
12. EEG rhythm separation and time-frequency analysis of fast multivariate empirical mode decomposition for motor imagery BCI. Jiao Y; Zheng Q; Qiao D; Lang X; Xie L; Pan Y Biol Cybern; 2024 Apr; 118(1-2):21-37. PubMed ID: 38472417 [TBL] [Abstract][Full Text] [Related]
13. Single-trial classification of near-infrared spectroscopy signals arising from multiple cortical regions. Schudlo LC; Chau T Behav Brain Res; 2015 Sep; 290():131-42. PubMed ID: 25960315 [TBL] [Abstract][Full Text] [Related]
14. Development and testing an online near-infrared spectroscopy brain-computer interface tailored to an individual with severe congenital motor impairments. Schudlo LC; Chau T Disabil Rehabil Assist Technol; 2018 Aug; 13(6):581-591. PubMed ID: 28758809 [TBL] [Abstract][Full Text] [Related]
15. Improvement of Information Transfer Rates Using a Hybrid EEG-NIRS Brain-Computer Interface with a Short Trial Length: Offline and Pseudo-Online Analyses. Shin J; Kim DW; Müller KR; Hwang HJ Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29874804 [TBL] [Abstract][Full Text] [Related]
16. Classification of frontal cortex haemodynamic responses during cognitive tasks using wavelet transforms and machine learning algorithms. Abibullaev B; An J Med Eng Phys; 2012 Dec; 34(10):1394-410. PubMed ID: 22310482 [TBL] [Abstract][Full Text] [Related]
17. Nonlinear and nonstationary framework for feature extraction and classification of motor imagery. Trad D; Al-ani T; Monacelli E; Jemni M IEEE Int Conf Rehabil Robot; 2011; 2011():5975488. PubMed ID: 22275685 [TBL] [Abstract][Full Text] [Related]
18. Empirical mode decomposition analysis of near-infrared spectroscopy muscular signals to assess the effect of physical activity in type 2 diabetic patients. Molinari F; Joy Martis R; Acharya UR; Meiburger KM; De Luca R; Petraroli G; Liboni W Comput Biol Med; 2015 Apr; 59():1-9. PubMed ID: 25658504 [TBL] [Abstract][Full Text] [Related]
19. Bimodal BCI using simultaneously NIRS and EEG. Tomita Y; Vialatte FB; Dreyfus G; Mitsukura Y; Bakardjian H; Cichocki A IEEE Trans Biomed Eng; 2014 Apr; 61(4):1274-84. PubMed ID: 24658251 [TBL] [Abstract][Full Text] [Related]
20. Single-Trial NIRS Data Classification for Brain-Computer Interfaces Using Graph Signal Processing. Petrantonakis PC; Kompatsiaris I IEEE Trans Neural Syst Rehabil Eng; 2018 Sep; 26(9):1700-1709. PubMed ID: 30059311 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]