BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 25640849)

  • 1. Baicalin inhibits the fenton reaction by enhancing electron transfer from Fe (2+) to dissolved oxygen.
    Nishizaki D; Iwahashi H
    Am J Chin Med; 2015; 43(1):87-101. PubMed ID: 25640849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quinolinic acid-iron(ii) complexes: slow autoxidation, but enhanced hydroxyl radical production in the Fenton reaction.
    Pláteník J; Stopka P; Vejrazka M; Stípek S
    Free Radic Res; 2001 May; 34(5):445-59. PubMed ID: 11378528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron-chelating agents never suppress Fenton reaction but participate in quenching spin-trapped radicals.
    Li L; Abe Y; Kanagawa K; Shoji T; Mashino T; Mochizuki M; Tanaka M; Miyata N
    Anal Chim Acta; 2007 Sep; 599(2):315-9. PubMed ID: 17870296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scavenging effects of baicalin on free radicals and its protection on erythrocyte membrane from free radical injury.
    Shi H; Zhao B; Xin W
    Biochem Mol Biol Int; 1995 Apr; 35(5):981-94. PubMed ID: 7549941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of Fe(2+)- and Fe(3+)- induced hydroxyl radical production by the iron-chelating drug deferiprone.
    Timoshnikov VA; Kobzeva TV; Polyakov NE; Kontoghiorghes GJ
    Free Radic Biol Med; 2015 Jan; 78():118-22. PubMed ID: 25451643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of BPA degradation by serum as a hydroxyl radical scavenger and an Fe trapping agent in Fenton process.
    Sajiki J; Masumizu T
    Chemosphere; 2004 Oct; 57(4):241-52. PubMed ID: 15312722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of pH, buffers and role of quinolinic acid, a novel iron chelating agent, in the determination of hydroxyl radical scavenging activity of plant extracts by Electron Paramagnetic Resonance (EPR).
    Fadda A; Barberis A; Sanna D
    Food Chem; 2018 Feb; 240():174-182. PubMed ID: 28946259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of some naturally occurring iron ion chelators on in vitro superoxide radical formation.
    Hirai T; Fukushima K; Kumamoto K; Iwahashi H
    Biol Trace Elem Res; 2005; 108(1-3):77-85. PubMed ID: 16327062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Egg yolk phosvitin inhibits hydroxyl radical formation from the fenton reaction.
    Ishikawa S; Yano Y; Arihara K; Itoh M
    Biosci Biotechnol Biochem; 2004 Jun; 68(6):1324-31. PubMed ID: 15215598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the Hydroxyl Radical-Generating System in the Estimation of the Antioxidant Activity of Plant Extracts by Electron Paramagnetic Resonance (EPR).
    Sanna D; Fadda A
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron autoxidation and free radical generation: effects of buffers, ligands, and chelators.
    Welch KD; Davis TZ; Aust SD
    Arch Biochem Biophys; 2002 Jan; 397(2):360-9. PubMed ID: 11795895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction of the carbonate radical with the spin-trap 5,5-dimethyl-1-pyrroline-N-oxide in chemical and cellular systems: pulse radiolysis, electron paramagnetic resonance, and kinetic-competition studies.
    Alvarez MN; Peluffo G; Folkes L; Wardman P; Radi R
    Free Radic Biol Med; 2007 Dec; 43(11):1523-33. PubMed ID: 17964423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superoxide dismutase enhanced the formation of hydroxyl radicals in a reaction mixture containing xanthone under UVA irradiation.
    Mori H; Iwahashi H
    Biosci Biotechnol Biochem; 2007 Dec; 71(12):3014-8. PubMed ID: 18071267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quinolinic acid, alpha-picolinic acid, fusaric acid, and 2,6-pyridinedicarboxylic acid enhance the Fenton reaction in phosphate buffer.
    Iwahashi H; Kawamori H; Fukushima K
    Chem Biol Interact; 1999 Apr; 118(3):201-15. PubMed ID: 10362227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerobic oxidation of aminoacetone, a threonine catabolite: iron catalysis and coupled iron release from ferritin.
    Dutra F; Knudsen FS; Curi D; Bechara EJ
    Chem Res Toxicol; 2001 Sep; 14(9):1323-9. PubMed ID: 11559049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron complexing activity of mangiferin, a naturally occurring glucosylxanthone, inhibits mitochondrial lipid peroxidation induced by Fe2+-citrate.
    Andreu GP; Delgado R; Velho JA; Curti C; Vercesi AE
    Eur J Pharmacol; 2005 Apr; 513(1-2):47-55. PubMed ID: 15878708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arguments against the significance of the Fenton reaction contributing to signal pathways under in vivo conditions.
    Saran M; Michel C; Stettmaier K; Bors W
    Free Radic Res; 2000 Nov; 33(5):567-79. PubMed ID: 11200089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron-binding and anti-Fenton properties of baicalein and baicalin.
    Perez CA; Wei Y; Guo M
    J Inorg Biochem; 2009 Mar; 103(3):326-32. PubMed ID: 19108897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emergence of oxyl radicals as selective oxidants.
    Ramasarma T
    Indian J Biochem Biophys; 2012 Oct; 49(5):295-305. PubMed ID: 23259316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling the fenton reaction in wine.
    Elias RJ; Waterhouse AL
    J Agric Food Chem; 2010 Feb; 58(3):1699-707. PubMed ID: 20047324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.