BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25641249)

  • 1. Agrobacterium T-DNA integration into the plant genome can occur without the activity of key non-homologous end-joining proteins.
    Park SY; Vaghchhipawala Z; Vasudevan B; Lee LY; Shen Y; Singer K; Waterworth WM; Zhang ZJ; West CE; Mysore KS; Gelvin SB
    Plant J; 2015 Mar; 81(6):934-46. PubMed ID: 25641249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Agrobacterium may delay plant nonhomologous end-joining DNA repair via XRCC4 to favor T-DNA integration.
    Vaghchhipawala ZE; Vasudevan B; Lee S; Morsy MR; Mysore KS
    Plant Cell; 2012 Oct; 24(10):4110-23. PubMed ID: 23064322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ku80 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis.
    Gallego ME; Bleuyard JY; Daoudal-Cotterell S; Jallut N; White CI
    Plant J; 2003 Sep; 35(5):557-65. PubMed ID: 12940949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of Agrobacterium T-DNA into the Plant Genome.
    Gelvin SB
    Annu Rev Genet; 2017 Nov; 51():195-217. PubMed ID: 28853920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of Ku70/80 or Lig4 leads to decreased stable transformation and enhanced homologous recombination in rice.
    Nishizawa-Yokoi A; Nonaka S; Saika H; Kwon YI; Osakabe K; Toki S
    New Phytol; 2012 Dec; 196(4):1048-1059. PubMed ID: 23050791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agrobacterium-Mediated Transformation of Yeast and Fungi.
    Hooykaas PJJ; van Heusden GPH; Niu X; Reza Roushan M; Soltani J; Zhang X; van der Zaal BJ
    Curr Top Microbiol Immunol; 2018; 418():349-374. PubMed ID: 29770864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant DNA Repair and
    Gelvin SB
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445162
    [No Abstract]   [Full Text] [Related]  

  • 8. Multiple host-cell recombination pathways act in Agrobacterium-mediated transformation of plant cells.
    Mestiri I; Norre F; Gallego ME; White CI
    Plant J; 2014 Feb; 77(4):511-20. PubMed ID: 24299074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Agrobacterium T-DNA integration in somatic cells does not require the activity of DNA polymerase θ.
    Nishizawa-Yokoi A; Saika H; Hara N; Lee LY; Toki S; Gelvin SB
    New Phytol; 2021 Mar; 229(5):2859-2872. PubMed ID: 33105034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arabidopsis VIRE2 INTERACTING PROTEIN2 is required for Agrobacterium T-DNA integration in plants.
    Anand A; Krichevsky A; Schornack S; Lahaye T; Tzfira T; Tang Y; Citovsky V; Mysore KS
    Plant Cell; 2007 May; 19(5):1695-708. PubMed ID: 17496122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Arabidopsis AtLIG4 gene is required for the repair of DNA damage, but not for the integration of Agrobacterium T-DNA.
    van Attikum H; Bundock P; Overmeer RM; Lee LY; Gelvin SB; Hooykaas PJ
    Nucleic Acids Res; 2003 Jul; 31(14):4247-55. PubMed ID: 12853643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome stability of Arabidopsis atm, ku80 and rad51b mutants: somatic and transgenerational responses to stress.
    Yao Y; Bilichak A; Titov V; Golubov A; Kovalchuk I
    Plant Cell Physiol; 2013 Jun; 54(6):982-9. PubMed ID: 23574700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration.
    Mysore KS; Nam J; Gelvin SB
    Proc Natl Acad Sci U S A; 2000 Jan; 97(2):948-53. PubMed ID: 10639185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways.
    Qi Y; Zhang Y; Zhang F; Baller JA; Cleland SC; Ryu Y; Starker CG; Voytas DF
    Genome Res; 2013 Mar; 23(3):547-54. PubMed ID: 23282329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of KU80 in T-DNA integration in plant cells.
    Li J; Vaidya M; White C; Vainstein A; Citovsky V; Tzfira T
    Proc Natl Acad Sci U S A; 2005 Dec; 102(52):19231-6. PubMed ID: 16380432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ku80- and DNA ligase IV-deficient plants are sensitive to ionizing radiation and defective in T-DNA integration.
    Friesner J; Britt AB
    Plant J; 2003 May; 34(4):427-40. PubMed ID: 12753583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The non-homologous end-joining pathway is involved in stable transformation in rice.
    Saika H; Nishizawa-Yokoi A; Toki S
    Front Plant Sci; 2014; 5():560. PubMed ID: 25368624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(ADP-ribose)polymerases are involved in microhomology mediated back-up non-homologous end joining in Arabidopsis thaliana.
    Jia Q; den Dulk-Ras A; Shen H; Hooykaas PJ; de Pater S
    Plant Mol Biol; 2013 Jul; 82(4-5):339-51. PubMed ID: 23625359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of T-Circles and Their Formation Reveal Similarities to
    Singer K; Lee LY; Yuan J; Gelvin SB
    Front Plant Sci; 2022; 13():849930. PubMed ID: 35599900
    [No Abstract]   [Full Text] [Related]  

  • 20. Transient down-regulation of the RNA silencing machinery increases efficiency of Agrobacterium-mediated transformation of Arabidopsis.
    Bilichak A; Yao Y; Kovalchuk I
    Plant Biotechnol J; 2014 Jun; 12(5):590-600. PubMed ID: 24472037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.