BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25641249)

  • 21. Characterization of gamma irradiation-induced mutations in Arabidopsis mutants deficient in non-homologous end joining.
    Du Y; Hase Y; Satoh K; Shikazono N
    J Radiat Res; 2020 Sep; 61(5):639-647. PubMed ID: 32766789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role for Artemis nuclease in the repair of radiation-induced DNA double strand breaks by alternative end joining.
    Moscariello M; Wieloch R; Kurosawa A; Li F; Adachi N; Mladenov E; Iliakis G
    DNA Repair (Amst); 2015 Jul; 31():29-40. PubMed ID: 25973742
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Several components of SKP1/Cullin/F-box E3 ubiquitin ligase complex and associated factors play a role in Agrobacterium-mediated plant transformation.
    Anand A; Rojas CM; Tang Y; Mysore KS
    New Phytol; 2012 Jul; 195(1):203-16. PubMed ID: 22486382
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High efficient gene targeting on the AGAMOUS gene in an ArabidopsisAtLIG4 mutant.
    Tanaka S; Ishii C; Hatakeyama S; Inoue H
    Biochem Biophys Res Commun; 2010 May; 396(2):289-93. PubMed ID: 20406622
    [TBL] [Abstract][Full Text] [Related]  

  • 25. GMI1, a structural-maintenance-of-chromosomes-hinge domain-containing protein, is involved in somatic homologous recombination in Arabidopsis.
    Böhmdorfer G; Schleiffer A; Brunmeir R; Ferscha S; Nizhynska V; Kozák J; Angelis KJ; Kreil DP; Schweizer D
    Plant J; 2011 Aug; 67(3):420-33. PubMed ID: 21481027
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Is VIP1 important for Agrobacterium-mediated transformation?
    Shi Y; Lee LY; Gelvin SB
    Plant J; 2014 Sep; 79(5):848-60. PubMed ID: 24953893
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deficiency of both classical and alternative end-joining pathways leads to a synergistic defect in double-strand break repair but not to an increase in homology-dependent gene targeting in Arabidopsis.
    Merker L; Feller L; Dorn A; Puchta H
    Plant J; 2024 Apr; 118(1):242-254. PubMed ID: 38179887
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overexpression of several Arabidopsis histone genes increases agrobacterium-mediated transformation and transgene expression in plants.
    Tenea GN; Spantzel J; Lee LY; Zhu Y; Lin K; Johnson SJ; Gelvin SB
    Plant Cell; 2009 Oct; 21(10):3350-67. PubMed ID: 19820187
    [TBL] [Abstract][Full Text] [Related]  

  • 29. T-DNA transfer and T-DNA integration efficiencies upon Arabidopsis thaliana root explant cocultivation and floral dip transformation.
    Ghedira R; De Buck S; Van Ex F; Angenon G; Depicker A
    Planta; 2013 Dec; 238(6):1025-37. PubMed ID: 23975012
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Involvement of AtPolλ in the repair of high salt- and DNA cross-linking agent-induced double strand breaks in Arabidopsis.
    Roy S; Choudhury SR; Sengupta DN; Das KP
    Plant Physiol; 2013 Jun; 162(2):1195-210. PubMed ID: 23660835
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression of the Arabidopsis histone H2A-1 gene correlates with susceptibility to Agrobacterium transformation.
    Yi H; Mysore KS; Gelvin SB
    Plant J; 2002 Nov; 32(3):285-98. PubMed ID: 12410808
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling the interplay between DNA-PK, Artemis, and ATM in non-homologous end-joining repair in G1 phase of the cell cycle.
    Rouhani M
    J Biol Phys; 2019 Jun; 45(2):127-146. PubMed ID: 30707386
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic interaction between DNA repair factors PAXX, XLF, XRCC4 and DNA-PKcs in human cells.
    Xing M; Oksenych V
    FEBS Open Bio; 2019 Jul; 9(7):1315-1326. PubMed ID: 31141305
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differences in the processing of DNA ends in Arabidopsis thaliana and tobacco: possible implications for genome evolution.
    Orel N; Puchta H
    Plant Mol Biol; 2003 Mar; 51(4):523-31. PubMed ID: 12650618
    [TBL] [Abstract][Full Text] [Related]  

  • 35. COM1, a factor of alternative non-homologous end joining, lagging behind the classic non-homologous end joining pathway in rice somatic cells.
    Xu Z; Zhang J; Cheng X; Tang Y; Gong Z; Gu M; Yu H
    Plant J; 2020 Jul; 103(1):140-153. PubMed ID: 32022972
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of RAR1 in Agrobacterium-mediated plant transformation.
    Anand A; Mysore KS
    Plant Signal Behav; 2013 Oct; 8(10):doi: 10.4161/psb.26784. PubMed ID: 24494233
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of Arabidopsis Ku80 deletion on the integration of the left border of T-DNA into plant chromosomal DNA via Agrobacterium tumefaciens.
    Yoshihara R; Mitomi Y; Okada M; Shibata H; Tanokami M; Nakajima Y; Inui H; Oono Y; Furudate H; Tanaka S
    Genes Genet Syst; 2020 Oct; 95(4):173-182. PubMed ID: 32848122
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of Ku70 and Ku80 homologues in Arabidopsis thaliana: evidence for a role in the repair of DNA double-strand breaks.
    Tamura K; Adachi Y; Chiba K; Oguchi K; Takahashi H
    Plant J; 2002 Mar; 29(6):771-81. PubMed ID: 12148535
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rewiring E2F1 with classical NHEJ via APLF suppression promotes bladder cancer invasiveness.
    Richter C; Marquardt S; Li F; Spitschak A; Murr N; Edelhäuser BAH; Iliakis G; Pützer BM; Logotheti S
    J Exp Clin Cancer Res; 2019 Jul; 38(1):292. PubMed ID: 31287003
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biochemical evidence for Ku-independent backup pathways of NHEJ.
    Wang H; Perrault AR; Takeda Y; Qin W; Wang H; Iliakis G
    Nucleic Acids Res; 2003 Sep; 31(18):5377-88. PubMed ID: 12954774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.