These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 25641322)
1. Safe and effective cryopreservation methods for long-term storage of human-amniotic-fluid-derived stem cells. Hennes A; Gucciardo L; Zia S; Lesage F; Lefèvre N; Lewi L; Vorsselmans A; Cos T; Lories R; Deprest J; Toelen J Prenat Diagn; 2015 May; 35(5):456-62. PubMed ID: 25641322 [TBL] [Abstract][Full Text] [Related]
2. Cryopreservation of amniotic fluid-derived stem cells using natural cryoprotectants and low concentrations of dimethylsulfoxide. Seo JM; Sohn MY; Suh JS; Atala A; Yoo JJ; Shon YH Cryobiology; 2011 Jun; 62(3):167-73. PubMed ID: 21335000 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of cell viability and apoptosis in human amniotic fluid-derived stem cells with natural cryoprotectants. Cho HJ; Lee SH; Yoo JJ; Shon YH Cryobiology; 2014 Apr; 68(2):244-50. PubMed ID: 24530510 [TBL] [Abstract][Full Text] [Related]
4. Survivability of rabbit amniotic fluid-derived mesenchymal stem cells post slow-freezing or vitrification. Kulikova B; Kovac M; Bauer M; Tomkova M; Olexikova L; Vasicek J; Balazi A; Makarevich AV; Chrenek P Acta Histochem; 2019 May; 121(4):491-499. PubMed ID: 31005288 [TBL] [Abstract][Full Text] [Related]
5. Cryopreservation of rabbit semen: comparing the effects of different cryoprotectants, cryoprotectant-free vitrification, and the use of albumin plus osmoprotectants on sperm survival and fertility after standard vapor freezing and vitrification. Rosato MP; Iaffaldano N Theriogenology; 2013 Feb; 79(3):508-16. PubMed ID: 23218394 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of distinct freezing methods and cryoprotectants for human amniotic fluid stem cells cryopreservation. Janz Fde L; Debes Ade A; Cavaglieri Rde C; Duarte SA; Romão CM; Morón AF; Zugaib M; Bydlowski SP J Biomed Biotechnol; 2012; 2012():649353. PubMed ID: 22665987 [TBL] [Abstract][Full Text] [Related]
7. Cryopreservation of cartilage cell and tissue for biobanking. Cetinkaya G; Arat S Cryobiology; 2011 Dec; 63(3):292-7. PubMed ID: 22020192 [TBL] [Abstract][Full Text] [Related]
8. Cryopreservation of umbilical cord blood-derived mesenchymal stem cells without dimethyl sulfoxide. Wang HY; Lun ZR; Lu SS Cryo Letters; 2011; 32(1):81-8. PubMed ID: 21468457 [TBL] [Abstract][Full Text] [Related]
9. Viability and function of the cryopreserved whole rat ovary: comparison between slow-freezing and vitrification. Milenkovic M; Diaz-Garcia C; Wallin A; Brännström M Fertil Steril; 2012 May; 97(5):1176-82. PubMed ID: 22341373 [TBL] [Abstract][Full Text] [Related]
10. Influence of cell loss after vitrification or slow-freezing on further in vitro development and implantation of human Day 3 embryos. Van Landuyt L; Van de Velde H; De Vos A; Haentjens P; Blockeel C; Tournaye H; Verheyen G Hum Reprod; 2013 Nov; 28(11):2943-9. PubMed ID: 24014599 [TBL] [Abstract][Full Text] [Related]
12. Effective surface-based cryopreservation of human embryonic stem cells by vitrification. Beier AF; Schulz JC; Dörr D; Katsen-Globa A; Sachinidis A; Hescheler J; Zimmermann H Cryobiology; 2011 Dec; 63(3):175-85. PubMed ID: 21910982 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of bone marrow-derived mesenchymal stem cells after cryopreservation and hypothermic storage in clinically safe medium. Ginis I; Grinblat B; Shirvan MH Tissue Eng Part C Methods; 2012 Jun; 18(6):453-63. PubMed ID: 22196031 [TBL] [Abstract][Full Text] [Related]
14. Cryopreservation of human embryonic stem cells without the use of a programmable freezer. Ha SY; Jee BC; Suh CS; Kim HS; Oh SK; Kim SH; Moon SY Hum Reprod; 2005 Jul; 20(7):1779-85. PubMed ID: 15760949 [TBL] [Abstract][Full Text] [Related]
15. A simple and highly effective method for slow-freezing human pluripotent stem cells using dimethyl sulfoxide, hydroxyethyl starch and ethylene glycol. Imaizumi K; Nishishita N; Muramatsu M; Yamamoto T; Takenaka C; Kawamata S; Kobayashi K; Nishikawa S; Akuta T PLoS One; 2014; 9(2):e88696. PubMed ID: 24533137 [TBL] [Abstract][Full Text] [Related]
16. In vitro comparisons of two cryopreservation techniques for equine embryos: slow-cooling and open pulled straw (OPS) vitrification. Moussa M; Bersinger I; Doligez P; Guignot F; Duchamp G; Vidament M; Mermillod P; Bruyas JF Theriogenology; 2005 Oct; 64(7):1619-32. PubMed ID: 15907992 [TBL] [Abstract][Full Text] [Related]
17. Optimal vitrification protocol for mouse ovarian tissue cryopreservation: effect of cryoprotective agents and in vitro culture on vitrified-warmed ovarian tissue survival. Youm HW; Lee JR; Lee J; Jee BC; Suh CS; Kim SH Hum Reprod; 2014 Apr; 29(4):720-30. PubMed ID: 24365801 [TBL] [Abstract][Full Text] [Related]
18. Development of a novel method for amniotic fluid stem cell storage. Zavatti M; Beretti F; Casciaro F; Comitini G; Franchi F; Barbieri V; Bertoni L; De Pol A; La Sala GB; Maraldi T Cytotherapy; 2017 Aug; 19(8):1002-1012. PubMed ID: 28571656 [TBL] [Abstract][Full Text] [Related]
19. Development of a cryopreservation protocol for type A spermatogonia. Izadyar F; Matthijs-Rijsenbilt JJ; den Ouden K; Creemers LB; Woelders H; de Rooij DG J Androl; 2002; 23(4):537-45. PubMed ID: 12065461 [TBL] [Abstract][Full Text] [Related]
20. Cryopreservation of Endothelial Cells in Various Cryoprotective Agents and Media - Vitrification versus Slow Freezing Methods. von Bomhard A; Elsässer A; Ritschl LM; Schwarz S; Rotter N PLoS One; 2016; 11(2):e0149660. PubMed ID: 26890410 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]