These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
481 related articles for article (PubMed ID: 25641332)
1. Photo-crosslinkable hydrogel-based 3D microfluidic culture device. Lee Y; Lee JM; Bae PK; Chung IY; Chung BH; Chung BG Electrophoresis; 2015 Apr; 36(7-8):994-1001. PubMed ID: 25641332 [TBL] [Abstract][Full Text] [Related]
2. Hydrogel-encapsulated 3D microwell array for neuronal differentiation. Bae JH; Lee JM; Chung BG Biomed Mater; 2016 Feb; 11(1):015019. PubMed ID: 26928882 [TBL] [Abstract][Full Text] [Related]
3. Hydrogel microfluidic co-culture device for photothermal therapy and cancer migration. Lee JM; Seo HI; Bae JH; Chung BG Electrophoresis; 2017 May; 38(9-10):1318-1324. PubMed ID: 28169441 [TBL] [Abstract][Full Text] [Related]
4. GelMA-collagen blends enable drop-on-demand 3D printablility and promote angiogenesis. Stratesteffen H; Köpf M; Kreimendahl F; Blaeser A; Jockenhoevel S; Fischer H Biofabrication; 2017 Sep; 9(4):045002. PubMed ID: 28795951 [TBL] [Abstract][Full Text] [Related]
5. Photo-crosslinkable hydrogel incorporated with bone matrix particles for advancements in dentin tissue engineering. da Silva ISP; Bordini EAF; Bronze-Uhle ES; de Stuani V; Costa MC; de Carvalho LAM; Cassiano FB; de Azevedo Silva LJ; Borges AFS; Soares DG J Biomed Mater Res A; 2024 Dec; 112(12):2273-2288. PubMed ID: 39015005 [TBL] [Abstract][Full Text] [Related]
6. Microfluidic-enabled bottom-up hydrogels from annealable naturally-derived protein microbeads. Sheikhi A; de Rutte J; Haghniaz R; Akouissi O; Sohrabi A; Di Carlo D; Khademhosseini A Biomaterials; 2019 Feb; 192():560-568. PubMed ID: 30530245 [TBL] [Abstract][Full Text] [Related]
7. Sequentially-crosslinked bioactive hydrogels as nano-patterned substrates with customizable stiffness and degradation for corneal tissue engineering applications. Rizwan M; Peh GSL; Ang HP; Lwin NC; Adnan K; Mehta JS; Tan WS; Yim EKF Biomaterials; 2017 Mar; 120():139-154. PubMed ID: 28061402 [TBL] [Abstract][Full Text] [Related]
8. Molecular interactions and forces of adhesion between single human neural stem cells and gelatin methacrylate hydrogels of varying stiffness. Puckert C; Tomaskovic-Crook E; Gambhir S; Wallace GG; Crook JM; Higgins MJ Acta Biomater; 2020 Apr; 106():156-169. PubMed ID: 32084598 [TBL] [Abstract][Full Text] [Related]
9. Enhanced mechanical and cell adhesive properties of photo-crosslinked PEG hydrogels by incorporation of gelatin in the networks. Liang J; Guo Z; Timmerman A; Grijpma D; Poot A Biomed Mater; 2019 Jan; 14(2):024102. PubMed ID: 30524039 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and characterization of site selective photo-crosslinkable glycidyl methacrylate functionalized gelatin-based 3D hydrogel scaffold for liver tissue engineering. Sk MM; Das P; Panwar A; Tan LP Mater Sci Eng C Mater Biol Appl; 2021 Apr; 123():111694. PubMed ID: 33812568 [TBL] [Abstract][Full Text] [Related]
11. Interpenetrating polymer network hydrogels composed of chitosan and photocrosslinkable gelatin with enhanced mechanical properties for tissue engineering. Suo H; Zhang D; Yin J; Qian J; Wu ZL; Fu J Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():612-620. PubMed ID: 30184788 [TBL] [Abstract][Full Text] [Related]
12. An in vitro vascular chip using 3D printing-enabled hydrogel casting. Yang L; Shridhar SV; Gerwitz M; Soman P Biofabrication; 2016 Aug; 8(3):035015. PubMed ID: 27563030 [TBL] [Abstract][Full Text] [Related]
13. Multicellular Co-Culture in Three-Dimensional Gelatin Methacryloyl Hydrogels for Liver Tissue Engineering. Cui J; Wang H; Shi Q; Sun T; Huang Q; Fukuda T Molecules; 2019 May; 24(9):. PubMed ID: 31067670 [TBL] [Abstract][Full Text] [Related]
14. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy. Yin J; Yan M; Wang Y; Fu J; Suo H ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059 [TBL] [Abstract][Full Text] [Related]
15. Comparative study of gelatin methacrylate hydrogels from different sources for biofabrication applications. Wang Z; Tian Z; Menard F; Kim K Biofabrication; 2017 Aug; 9(4):044101. PubMed ID: 28770808 [TBL] [Abstract][Full Text] [Related]
16. Enhanced Electroactivity, Mechanical Properties, and Printability through the Addition of Graphene Oxide to Photo-Cross-linkable Gelatin Methacryloyl Hydrogel. Xavier Mendes A; Moraes Silva S; O'Connell CD; Duchi S; Quigley AF; Kapsa RMI; Moulton SE ACS Biomater Sci Eng; 2021 Jun; 7(6):2279-2295. PubMed ID: 33956434 [TBL] [Abstract][Full Text] [Related]
17. Effects of Encapsulated Cells on the Physical-Mechanical Properties and Microstructure of Gelatin Methacrylate Hydrogels. Krishnamoorthy S; Noorani B; Xu C Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31614713 [TBL] [Abstract][Full Text] [Related]
18. Biohybrid methacrylated gelatin/polyacrylamide hydrogels for cartilage repair. Han L; Xu J; Lu X; Gan D; Wang Z; Wang K; Zhang H; Yuan H; Weng J J Mater Chem B; 2017 Jan; 5(4):731-741. PubMed ID: 32263841 [TBL] [Abstract][Full Text] [Related]
19. Directing Induced Pluripotent Stem Cell Derived Neural Stem Cell Fate with a Three-Dimensional Biomimetic Hydrogel for Spinal Cord Injury Repair. Fan L; Liu C; Chen X; Zou Y; Zhou Z; Lin C; Tan G; Zhou L; Ning C; Wang Q ACS Appl Mater Interfaces; 2018 May; 10(21):17742-17755. PubMed ID: 29733569 [TBL] [Abstract][Full Text] [Related]
20. Photopolymerization of cell-laden gelatin methacryloyl hydrogels using a dental curing light for regenerative dentistry. Monteiro N; Thrivikraman G; Athirasala A; Tahayeri A; França CM; Ferracane JL; Bertassoni LE Dent Mater; 2018 Mar; 34(3):389-399. PubMed ID: 29199008 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]