These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 25641615)

  • 1. Floral induction and flower formation--the role and potential applications of miRNAs.
    Hong Y; Jackson S
    Plant Biotechnol J; 2015 Apr; 13(3):282-92. PubMed ID: 25641615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Critical Role of miRNAs in Regulation of Flowering Time and Flower Development.
    Waheed S; Zeng L
    Genes (Basel); 2020 Mar; 11(3):. PubMed ID: 32192095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary conservation of microRNA regulatory programs in plant flower development.
    Luo Y; Guo Z; Li L
    Dev Biol; 2013 Aug; 380(2):133-44. PubMed ID: 23707900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small RNA and mRNA Sequencing Reveal the Roles of microRNAs Involved in Pomegranate Female Sterility.
    Chen L; Luo X; Yang X; Jing D; Xia X; Li H; Poudel K; Cao S
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31952315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of miRNAs associated with sterile flower buds in the tea plant based on small RNA sequencing.
    Qu H; Liu Y; Jiang H; Liu Y; Song W; Chen L
    Hereditas; 2021 Jul; 158(1):26. PubMed ID: 34271985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNAs in Control of Plant Development.
    Li C; Zhang B
    J Cell Physiol; 2016 Feb; 231(2):303-13. PubMed ID: 26248304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. To bloom or not to bloom: role of microRNAs in plant flowering.
    Teotia S; Tang G
    Mol Plant; 2015 Mar; 8(3):359-77. PubMed ID: 25737467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and functional analysis of flowering related microRNAs in common wild rice (Oryza rufipogon Griff.).
    Chen Z; Li F; Yang S; Dong Y; Yuan Q; Wang F; Li W; Jiang Y; Jia S; Pei X
    PLoS One; 2013; 8(12):e82844. PubMed ID: 24386120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progress on the mechanism of hormones regulating plant flower formation.
    Zou L; Pan C; Wang MX; Cui L; Han BY
    Yi Chuan; 2020 Aug; 42(8):739-751. PubMed ID: 32952110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-coding RNAs having strong positive interaction with mRNAs reveal their regulatory nature during flowering in a wild relative of pigeonpea (Cajanus scarabaeoides).
    Das A; Saxena S; Kumar K; Tribhuvan KU; Singh NK; Gaikwad K
    Mol Biol Rep; 2020 May; 47(5):3305-3317. PubMed ID: 32248382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of miRNAs and their targets by high-throughput sequencing and degradome analysis in cytoplasmic male-sterile line NJCMS1A and its maintainer NJCMS1B of soybean.
    Ding X; Li J; Zhang H; He T; Han S; Li Y; Yang S; Gai J
    BMC Genomics; 2016 Jan; 17():24. PubMed ID: 26729289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. miRNAs involved in the development and differentiation of fertile and sterile flowers in Viburnum macrocephalum f. keteleeri.
    Li W; He Z; Zhang L; Lu Z; Xu J; Cui J; Wang L; Jin B
    BMC Genomics; 2017 Oct; 18(1):783. PubMed ID: 29029607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small RNAs: Big Impact on Plant Development.
    D'Ario M; Griffiths-Jones S; Kim M
    Trends Plant Sci; 2017 Dec; 22(12):1056-1068. PubMed ID: 29032035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated Analysis of Small RNA, Transcriptome and Degradome Sequencing Provides New Insights into Floral Development and Abscission in Yellow Lupine (
    Glazińska P; Kulasek M; Glinkowski W; Wojciechowski W; Kosiński J
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31623090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small but powerful: function of microRNAs in plant development.
    Liu H; Yu H; Tang G; Huang T
    Plant Cell Rep; 2018 Mar; 37(3):515-528. PubMed ID: 29318384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Target-mimicry based diminution of miRNA167 reinforced flowering-time phenotypes in tobacco via spatial-transcriptional biases of flowering-associated miRNAs.
    Arora S; Pandey DK; Chaudhary B
    Gene; 2019 Jan; 682():67-80. PubMed ID: 30292869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of miRNAs and Their Targets Involved in Flower and Fruit Development across Domesticated and Wild
    Lopez-Ortiz C; Peña-Garcia Y; Bhandari M; Abburi VL; Natarajan P; Stommel J; Nimmakayala P; Reddy UK
    Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34064462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNAs and their cross-talks in plant development.
    Jin D; Wang Y; Zhao Y; Chen M
    J Genet Genomics; 2013 Apr; 40(4):161-70. PubMed ID: 23618399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomic analysis of flower induction for long-day pitaya by supplementary lighting in short-day winter season.
    Xiong R; Liu C; Xu M; Wei SS; Huang JQ; Tang H
    BMC Genomics; 2020 Apr; 21(1):329. PubMed ID: 32349680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in the regulation of plant development and stress response by miR167.
    Liu X; Huang S; Xie H
    Front Biosci (Landmark Ed); 2021 Sep; 26(9):655-665. PubMed ID: 34590474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.