BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 25641692)

  • 1. Susceptibility of Candida albicans to new synthetic sulfone derivatives.
    Staniszewska M; Bondaryk M; Ochal Z
    Arch Pharm (Weinheim); 2015 Feb; 348(2):132-43. PubMed ID: 25641692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New synthetic sulfone derivatives inhibit growth, adhesion and the leucine arylamidase APE2 gene expression of Candida albicans in vitro.
    Staniszewska M; Bondaryk M; Ochal Z
    Bioorg Med Chem; 2015 Jan; 23(2):314-21. PubMed ID: 25515956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfone derivatives reduce growth, adhesion and aspartic protease SAP2 gene expression.
    Bondaryk M; Ochal Z; Staniszewska M
    World J Microbiol Biotechnol; 2014 Sep; 30(9):2511-21. PubMed ID: 24880247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The in vitro effects of new D186 dendrimer on virulence factors of Candida albicans.
    Staniszewska M; Bondaryk M; Zielińska P; Urbańczyk-Lipkowska Z
    J Antibiot (Tokyo); 2014 Jun; 67(6):425-32. PubMed ID: 24690909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of serine protease KEX2 on Candida albicans virulence under halogenated methyl sulfones.
    Staniszewska M; Bondaryk M; Kazek M; Gliniewicz A; Braunsdorf C; Schaller M; Mora-Montes HM; Ochal Z
    Future Microbiol; 2017 Mar; 12():285-306. PubMed ID: 28287299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfone derivatives enter the cytoplasm of Candida albicans sessile cells.
    Staniszewska M; Sobiepanek A; Gizińska M; Peña-Cabrera E; Arroyo-Córdoba IJ; Kazek M; Kuryk Ł; Wieczorek M; Koronkiewicz M; Kobiela T; Ochal Z
    Eur J Med Chem; 2020 Apr; 191():112139. PubMed ID: 32109777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New antifungal 4-chloro-3-nitrophenyldifluoroiodomethyl sulfone reduces the Candida albicans pathogenicity in the Galleria mellonella model organism.
    Staniszewska M; Gizińska M; Kazek M; de Jesús González-Hernández R; Ochal Z; Mora-Montes HM
    Braz J Microbiol; 2020 Mar; 51(1):5-14. PubMed ID: 31486049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of filamentation and mode of growth on antifungal susceptibility of Candida albicans.
    Watamoto T; Samaranayake LP; Jayatilake JA; Egusa H; Yatani H; Seneviratne CJ
    Int J Antimicrob Agents; 2009 Oct; 34(4):333-9. PubMed ID: 19376687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Candida albicans hyphal formation and the expression of the Efg1-regulated proteinases Sap4 to Sap6 are required for the invasion of parenchymal organs.
    Felk A; Kretschmar M; Albrecht A; Schaller M; Beinhauer S; Nichterlein T; Sanglard D; Korting HC; Schäfer W; Hube B
    Infect Immun; 2002 Jul; 70(7):3689-700. PubMed ID: 12065511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory Effect of Sophorolipid on Candida albicans Biofilm Formation and Hyphal Growth.
    Haque F; Alfatah M; Ganesan K; Bhattacharyya MS
    Sci Rep; 2016 Mar; 6():23575. PubMed ID: 27030404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of
    Lee HS; Kim Y
    J Microbiol Biotechnol; 2018 Mar; 28(3):482-490. PubMed ID: 29316739
    [No Abstract]   [Full Text] [Related]  

  • 12. Azole antifungals induce up-regulation of SAP4, SAP5 and SAP6 secreted proteinase genes in filamentous Candida albicans cells in vitro and in vivo.
    Barelle CJ; Duncan VM; Brown AJ; Gow NA; Odds FC
    J Antimicrob Chemother; 2008 Feb; 61(2):315-22. PubMed ID: 18033783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of hyphae formation and SIR2 expression in Candida albicans treated with fresh Allium sativum (garlic) extract.
    Low CF; Chong PP; Yong PV; Lim CS; Ahmad Z; Othman F
    J Appl Microbiol; 2008 Dec; 105(6):2169-77. PubMed ID: 19120662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of SAP7-10 and Morphological Regulators (EFG1, CPH1) in Candida albicans' Hypha Formation and Adhesion to Colorectal Carcinoma Caco-2.
    Staniszewska M; Bondaryk M; Zukowski K; Chudy M
    Pol J Microbiol; 2015; 64(3):203-10. PubMed ID: 26638528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Profile of Candida albicans-secreted aspartic proteinase elicited during vaginal infection.
    Taylor BN; Staib P; Binder A; Biesemeier A; Sehnal M; Röllinghoff M; Morschhäuser J; Schröppel K
    Infect Immun; 2005 Mar; 73(3):1828-35. PubMed ID: 15731084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antifungal effects of undecylenic acid on the biofilm formation of Candida albicans.
    Shi D; Zhao Y; Yan H; Fu H; Shen Y; Lu G; Mei H; Qiu Y; Li D; Liu W
    Int J Clin Pharmacol Ther; 2016 May; 54(5):343-53. PubMed ID: 26902505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro study of secreted aspartyl proteinases Sap1 to Sap3 and Sap4 to Sap6 expression in Candida albicans pleomorphic forms.
    Staniszewska M; Bondaryk M; Siennicka K; Kurek A; Orłowski J; Schaller M; Kurzatkowski W
    Pol J Microbiol; 2012; 61(4):247-56. PubMed ID: 23484407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The expression of genes involved in the ergosterol biosynthesis pathway in Candida albicans and Candida dubliniensis biofilms exposed to fluconazole.
    Borecká-Melkusová S; Moran GP; Sullivan DJ; Kucharíková S; Chorvát D; Bujdáková H
    Mycoses; 2009 Mar; 52(2):118-28. PubMed ID: 18627475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of Candida albicans biofilm formation and yeast-hyphal transition by 4-hydroxycordoin.
    Messier C; Epifano F; Genovese S; Grenier D
    Phytomedicine; 2011 Mar; 18(5):380-3. PubMed ID: 21353508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of secreted aspartyl proteinases in Candida albicans keratitis.
    Jackson BE; Wilhelmus KR; Hube B
    Invest Ophthalmol Vis Sci; 2007 Aug; 48(8):3559-65. PubMed ID: 17652724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.