BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 25641793)

  • 1. Precise Manipulation and Patterning of Protein Crystals for Macromolecular Crystallography Using Surface Acoustic Waves.
    Guo F; Zhou W; Li P; Mao Z; Yennawar NH; French JB; Huang TJ
    Small; 2015 Jun; 11(23):2733-7. PubMed ID: 25641793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterning of microspheres and microbubbles in an acoustic tweezers.
    Bernassau AL; Macpherson PG; Beeley J; Drinkwater BW; Cumming DR
    Biomed Microdevices; 2013 Apr; 15(2):289-97. PubMed ID: 23225102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gentle, fast and effective crystal soaking by acoustic dispensing.
    Collins PM; Ng JT; Talon R; Nekrosiute K; Krojer T; Douangamath A; Brandao-Neto J; Wright N; Pearce NM; von Delft F
    Acta Crystallogr D Struct Biol; 2017 Mar; 73(Pt 3):246-255. PubMed ID: 28291760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling acoustic streaming in an ultrasonic heptagonal tweezers with application to cell manipulation.
    Bernassau AL; Glynne-Jones P; Gesellchen F; Riehle M; Hill M; Cumming DR
    Ultrasonics; 2014 Jan; 54(1):268-74. PubMed ID: 23725599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reusable acoustic tweezers for disposable devices.
    Guo F; Xie Y; Li S; Lata J; Ren L; Mao Z; Ren B; Wu M; Ozcelik A; Huang TJ
    Lab Chip; 2015 Dec; 15(24):4517-23. PubMed ID: 26507411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hitting the target: fragment screening with acoustic in situ co-crystallization of proteins plus fragment libraries on pin-mounted data-collection micromeshes.
    Yin X; Scalia A; Leroy L; Cuttitta CM; Polizzo GM; Ericson DL; Roessler CG; Campos O; Ma MY; Agarwal R; Jackimowicz R; Allaire M; Orville AM; Sweet RM; Soares AS
    Acta Crystallogr D Biol Crystallogr; 2014 May; 70(Pt 5):1177-89. PubMed ID: 24816088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile microfluidic channels for acoustophoresis on a budget.
    Samarasekera C; Yeow JT
    Biomed Microdevices; 2015 Oct; 17(5):99. PubMed ID: 26354878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves.
    Ding X; Lin SC; Kiraly B; Yue H; Li S; Chiang IK; Shi J; Benkovic SJ; Huang TJ
    Proc Natl Acad Sci U S A; 2012 Jul; 109(28):11105-9. PubMed ID: 22733731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rotational manipulation of single cells and organisms using acoustic waves.
    Ahmed D; Ozcelik A; Bojanala N; Nama N; Upadhyay A; Chen Y; Hanna-Rose W; Huang TJ
    Nat Commun; 2016 Mar; 7():11085. PubMed ID: 27004764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using sound pulses to solve the crystal-harvesting bottleneck.
    Samara YN; Brennan HM; McCarthy L; Bollard MT; Laspina D; Wlodek JM; Campos SL; Natarajan R; Gofron K; McSweeney S; Soares AS; Leroy L
    Acta Crystallogr D Struct Biol; 2018 Oct; 74(Pt 10):986-999. PubMed ID: 30289409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell membrane deformation induced by a fibronectin-coated polystyrene microbead in a 200-MHz acoustic trap.
    Hwang JY; Lee C; Lam KH; Kim HH; Lee J; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Mar; 61(3):399-406. PubMed ID: 24569245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collecting single molecules with conventional optical tweezers.
    Singer W; Nieminen TA; Heckenberg NR; Rubinsztein-Dunlop H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011916. PubMed ID: 17358193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ X-ray data collection and structure phasing of protein crystals at Structural Biology Center 19-ID.
    Michalska K; Tan K; Chang C; Li H; Hatzos-Skintges C; Molitsky M; Alkire R; Joachimiak A
    J Synchrotron Radiat; 2015 Nov; 22(6):1386-95. PubMed ID: 26524303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of acoustic bessel beams for handling of hollow porous spheres.
    Azarpeyvand M; Azarpeyvand M
    Ultrasound Med Biol; 2014 Feb; 40(2):422-33. PubMed ID: 24342912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic integrated acoustic waving for manipulation of cells and molecules.
    Barani A; Paktinat H; Janmaleki M; Mohammadi A; Mosaddegh P; Fadaei-Tehrani A; Sanati-Nezhad A
    Biosens Bioelectron; 2016 Nov; 85():714-725. PubMed ID: 27262557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustofluidics and whole-blood manipulation in surface acoustic wave counterflow devices.
    Travagliati M; Shilton RJ; Pagliazzi M; Tonazzini I; Beltram F; Cecchini M
    Anal Chem; 2014 Nov; 86(21):10633-8. PubMed ID: 25260018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies for sample delivery for femtosecond crystallography.
    Martiel I; Müller-Werkmeister HM; Cohen AE
    Acta Crystallogr D Struct Biol; 2019 Feb; 75(Pt 2):160-177. PubMed ID: 30821705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasonic manipulation of particles in an open fluid film.
    Jensen R; Gralinski I; Neild A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):1964-70. PubMed ID: 24658727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW).
    Shi J; Ahmed D; Mao X; Lin SC; Lawit A; Huang TJ
    Lab Chip; 2009 Oct; 9(20):2890-5. PubMed ID: 19789740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ macromolecular crystallography using microbeams.
    Axford D; Owen RL; Aishima J; Foadi J; Morgan AW; Robinson JI; Nettleship JE; Owens RJ; Moraes I; Fry EE; Grimes JM; Harlos K; Kotecha A; Ren J; Sutton G; Walter TS; Stuart DI; Evans G
    Acta Crystallogr D Biol Crystallogr; 2012 May; 68(Pt 5):592-600. PubMed ID: 22525757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.