BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 25641875)

  • 1. Proteomic dissection of plant responses to various pathogens.
    Fang X; Chen J; Dai L; Ma H; Zhang H; Yang J; Wang F; Yan C
    Proteomics; 2015 May; 15(9):1525-43. PubMed ID: 25641875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mass spectrometry-based proteomics for the detection of plant pathogens.
    Padliya ND; Cooper B
    Proteomics; 2006 Jul; 6(14):4069-75. PubMed ID: 16791831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolo-proteomics to discover plant biotic stress resistance genes.
    Kushalappa AC; Gunnaiah R
    Trends Plant Sci; 2013 Sep; 18(9):522-31. PubMed ID: 23790252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Advances in plant proteomics. II. Application of proteome techniques to plant biology research].
    Ruan SL; Ma HS; Wang SH; Xin Y; Qian LH; Tong JX; Zhao HP; Wang J
    Yi Chuan; 2006 Dec; 28(12):1633-48. PubMed ID: 17138554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current Status of Proteomic Studies on Defense Responses in Rice.
    Chen X; Bhadauria V; Ma B
    Curr Issues Mol Biol; 2016; 19():7-12. PubMed ID: 26364119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rice proteomics: A move toward expanded proteome coverage to comparative and functional proteomics uncovers the mysteries of rice and plant biology.
    Agrawal GK; Rakwal R
    Proteomics; 2011 May; 11(9):1630-49. PubMed ID: 21462347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the responses of rice to environmental stress using proteomics.
    Singh R; Jwa NS
    J Proteome Res; 2013 Nov; 12(11):4652-69. PubMed ID: 23984864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deciphering plant-microbe crosstalk through proteomics studies.
    Jain A; Singh HB; Das S
    Microbiol Res; 2021 Jan; 242():126590. PubMed ID: 33022544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rooteomics: the challenge of discovering plant defense-related proteins in roots.
    Mehta A; Magalhães BS; Souza DS; Vasconcelos EA; Silva LP; Grossi-de-Sa MF; Franco OL; da Costa PH; Rocha TL
    Curr Protein Pept Sci; 2008 Apr; 9(2):108-16. PubMed ID: 18393883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent insights into plant-virus interactions through proteomic analysis.
    Di Carli M; Benvenuto E; Donini M
    J Proteome Res; 2012 Oct; 11(10):4765-80. PubMed ID: 22954327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Overview of Proteomics Tools for Understanding Plant Defense Against Pathogens.
    Grandellis C; Vranych CV; Piazza A; Garavaglia BS; Gottig N; Ottado J
    Curr Issues Mol Biol; 2016; 19():129-36. PubMed ID: 26364117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant cell organelle proteomics in response to abiotic stress.
    Hossain Z; Nouri MZ; Komatsu S
    J Proteome Res; 2012 Jan; 11(1):37-48. PubMed ID: 22029473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Arabidopsis AtNPR1 inversely modulates defense responses against fungal, bacterial, or viral pathogens while conferring hypersensitivity to abiotic stresses in transgenic rice.
    Quilis J; Peñas G; Messeguer J; Brugidou C; San Segundo B
    Mol Plant Microbe Interact; 2008 Sep; 21(9):1215-31. PubMed ID: 18700826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relevance of proteomic investigations in plant abiotic stress physiology.
    Hakeem KR; Chandna R; Ahmad P; Iqbal M; Ozturk M
    OMICS; 2012 Nov; 16(11):621-35. PubMed ID: 23046473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomics of model and crop plant species: status, current limitations and strategic advances for crop improvement.
    Vanderschuren H; Lentz E; Zainuddin I; Gruissem W
    J Proteomics; 2013 Nov; 93():5-19. PubMed ID: 23748024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leaf proteome profiling of transgenic mint infected with Alternaria alternata.
    Sinha R; Bhattacharyya D; Majumdar AB; Datta R; Hazra S; Chattopadhyay S
    J Proteomics; 2013 Nov; 93():117-32. PubMed ID: 23369890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unraveling the Roles of Vascular Proteins Using Proteomics.
    Liu Y; Lin T; Valencia MV; Zhang C; Lv Z
    Molecules; 2021 Jan; 26(3):. PubMed ID: 33514014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomics insight into the biological safety of transgenic modification of rice as compared with conventional genetic breeding and spontaneous genotypic variation.
    Gong CY; Li Q; Yu HT; Wang Z; Wang T
    J Proteome Res; 2012 May; 11(5):3019-29. PubMed ID: 22509807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rice proteomics: ending phase I and the beginning of phase II.
    Agrawal GK; Jwa NS; Rakwal R
    Proteomics; 2009 Feb; 9(4):935-63. PubMed ID: 19212951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A decade of plant proteomics and mass spectrometry: translation of technical advancements to food security and safety issues.
    Agrawal GK; Sarkar A; Righetti PG; Pedreschi R; Carpentier S; Wang T; Barkla BJ; Kohli A; Ndimba BK; Bykova NV; Rampitsch C; Zolla L; Rafudeen MS; Cramer R; Bindschedler LV; Tsakirpaloglou N; Ndimba RJ; Farrant JM; Renaut J; Job D; Kikuchi S; Rakwal R
    Mass Spectrom Rev; 2013; 32(5):335-65. PubMed ID: 23315723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.