These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 25642003)

  • 1. Analysis of Finite Difference Discretization Schemes for Diffusion in Spheres with Variable Diffusivity.
    Versypt AN; Braatz RD
    Comput Chem Eng; 2014 Dec; 71():241-252. PubMed ID: 25642003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of invariant compact finite-difference schemes.
    Ozbenli E; Vedula P
    Phys Rev E; 2020 Feb; 101(2-1):023303. PubMed ID: 32168606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental validation of convection-diffusion discretisation scheme employed for computational modelling of biological mass transport.
    Carroll GT; Devereux PD; Ku DN; McGloughlin TM; Walsh MT
    Biomed Eng Online; 2010 Jul; 9():34. PubMed ID: 20642816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the accuracy of the spatial discretization in finite-difference electrochemical kinetic simulations, by means of the extended Numerov method.
    Bieniasz LK
    J Comput Chem; 2004 Jun; 25(8):1075-83. PubMed ID: 15067683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Space-discretization error analysis and stabilization schemes for conduction velocity in cardiac electrophysiology.
    Pezzuto S; Hake J; Sundnes J
    Int J Numer Method Biomed Eng; 2016 Oct; 32(10):. PubMed ID: 26685879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linear B-spline finite element method for the generalized diffusion equation with delay.
    Lubo GT; Duressa GF
    BMC Res Notes; 2022 Jun; 15(1):195. PubMed ID: 35658930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite volume schemes for the numerical simulation of tracer transport in plants.
    Bühler J; Huber G; von Lieres E
    Math Biosci; 2017 Jun; 288():14-20. PubMed ID: 28216295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discretization-related issues in the Kardar-Parisi-Zhang equation: consistency, Galilean-invariance violation, and fluctuation-dissipation relation.
    Wio HS; Revelli JA; Deza RR; Escudero C; de La Lama MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066706. PubMed ID: 20866543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical approximations for an age-structured model of a population dispersing in a spatially heterogeneous environment.
    Deng Q; Hallam TG
    Math Med Biol; 2004 Sep; 21(3):247-68. PubMed ID: 15471247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radial basis function-generated finite difference scheme for simulating the brain cancer growth model under radiotherapy in various types of computational domains.
    Dehghan M; Narimani N
    Comput Methods Programs Biomed; 2020 Oct; 195():105641. PubMed ID: 32726719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λ bounce-back flux scheme.
    Ginzburg I
    Phys Rev E; 2017 Jan; 95(1-1):013305. PubMed ID: 28208489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fourth-order accurate, Numerov-type, three-point finite-difference discretization of electrochemical reaction-diffusion equations on nonuniform (exponentially expanding) spatial grids in one-dimensional space geometry.
    Bieniasz LK
    J Comput Chem; 2004 Sep; 25(12):1515-21. PubMed ID: 15224395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiative transfer equation for predicting light propagation in biological media: comparison of a modified finite volume method, the Monte Carlo technique, and an exact analytical solution.
    Asllanaj F; Contassot-Vivier S; Liemert A; Kienle A
    J Biomed Opt; 2014 Jan; 19(1):15002. PubMed ID: 24390371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-order weighted essentially nonoscillatory finite-difference formulation of the lattice Boltzmann method in generalized curvilinear coordinates.
    Hejranfar K; Saadat MH; Taheri S
    Phys Rev E; 2017 Feb; 95(2-1):023314. PubMed ID: 28297984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient nonlinear finite-difference approach in the computational modeling of the dynamics of a nonlinear diffusion-reaction equation in microbial ecology.
    Macías-Díaz JE; Macías S; Medina-Ramírez IE
    Comput Biol Chem; 2013 Dec; 47():24-30. PubMed ID: 23850847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculation of effective diffusivities for biofilms and tissues.
    Wood BD; Quintard M; Whitaker S
    Biotechnol Bioeng; 2002 Mar; 77(5):495-516. PubMed ID: 11788949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional oscillator in time-dependent fields: comparison of some exact and approximate calculations.
    Chuluunbaatar O; Gusev AA; Vinitsky SI; Derbov VL; Galtbayar A; Zhanlav T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):017701. PubMed ID: 18764088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows.
    Liu H; Valocchi AJ; Zhang Y; Kang Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013010. PubMed ID: 23410429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of lateral transport of membrane components by spatial variations in diffusivity and solubility.
    de Beus A; Eisinger J
    Biophys J; 1992 Sep; 63(3):607-15. PubMed ID: 1420902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion via space discretization method to study the concentration dependence of self-diffusivity under confinement.
    Sant M; Papadopoulos GK; Theodorou DN
    J Chem Phys; 2010 Apr; 132(13):134108. PubMed ID: 20387922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.