These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 25642074)
1. Temperature changes caused by the difference in the distance between the ultrasound transducer and bone during 1 mhz and 3 mhz continuous ultrasound: a phantom study. Ohwatashi A; Ikeda S; Harada K; Kamikawa Y; Yoshida A; Inoue K; Yanagida N; Fukudome K; Kiyama R; Ohshige T; Maeda T J Phys Ther Sci; 2015 Jan; 27(1):205-8. PubMed ID: 25642074 [TBL] [Abstract][Full Text] [Related]
2. Thermal contribution of compact bone to intervening tissue-like media exposed to planar ultrasound. Moros EG; Novak P; Straube WL; Kolluri P; Yablonskiy DA; Myerson RJ Phys Med Biol; 2004 Mar; 49(6):869-86. PubMed ID: 15104313 [TBL] [Abstract][Full Text] [Related]
3. Temperature elevations computed for three-layer and four-layer obstetrical tissue models in nonlinear and linear ultrasonic propagation cases. Wójcik J; Filipczyński L; Kujawska T Ultrasound Med Biol; 1999 Feb; 25(2):259-67. PubMed ID: 10320315 [TBL] [Abstract][Full Text] [Related]
4. Effect of transducer velocity on intramuscular temperature during a 1-MHz ultrasound treatment. Weaver SL; Demchak TJ; Stone MB; Brucker JB; Burr PO J Orthop Sports Phys Ther; 2006 May; 36(5):320-5. PubMed ID: 16715832 [TBL] [Abstract][Full Text] [Related]
5. [Obstetrical ultrasound: can the fetus hear the wave and feel the heat?]. Abramowicz JS; Kremkau FW; Merz E Ultraschall Med; 2012 Jun; 33(3):215-7. PubMed ID: 22700164 [TBL] [Abstract][Full Text] [Related]
6. Rate of temperature increase in human muscle during 1 MHz and 3 MHz continuous ultrasound. Draper DO; Castel JC; Castel D J Orthop Sports Phys Ther; 1995 Oct; 22(4):142-50. PubMed ID: 8535471 [TBL] [Abstract][Full Text] [Related]
7. A comparison of human muscle temperature increases during 3-MHz continuous and pulsed ultrasound with equivalent temporal average intensities. Gallo JA; Draper DO; Brody LT; Fellingham GW J Orthop Sports Phys Ther; 2004 Jul; 34(7):395-401. PubMed ID: 15296367 [TBL] [Abstract][Full Text] [Related]
8. High-frequency (20-MHz) high-intensity focused ultrasound (HIFU) system for dermal intervention: Preclinical evaluation in skin equivalents. Bove T; Zawada T; Serup J; Jessen A; Poli M Skin Res Technol; 2019 Mar; 25(2):217-228. PubMed ID: 30620418 [TBL] [Abstract][Full Text] [Related]
9. A feasibility study of temperature rise measurement in a tissue phantom as an alternative way for characterization of the therapeutic high intensity focused ultrasonic field. Chen D; Fan T; Zhang D; Wu J Ultrasonics; 2009 Dec; 49(8):733-42. PubMed ID: 19576607 [TBL] [Abstract][Full Text] [Related]
10. Ultrasound assessment of the conversion of sound energy into heat in tissue phantoms enriched with magnetic micro- and nanoparticles. Gambin B; Kruglenko E; Tymkiewicz R; Litniewski J Med Phys; 2019 Oct; 46(10):4361-4370. PubMed ID: 31359439 [TBL] [Abstract][Full Text] [Related]
11. 3D conformal MRI-controlled transurethral ultrasound prostate therapy: validation of numerical simulations and demonstration in tissue-mimicking gel phantoms. Burtnyk M; N'Djin WA; Kobelevskiy I; Bronskill M; Chopra R Phys Med Biol; 2010 Nov; 55(22):6817-39. PubMed ID: 21030751 [TBL] [Abstract][Full Text] [Related]
12. Temperature elevation in a beam of ultrasound. Nyborg WL; Steele RB Ultrasound Med Biol; 1983; 9(6):611-20. PubMed ID: 6670146 [TBL] [Abstract][Full Text] [Related]
13. Development of a thermal test object for the measurement of ultrasound intracavity transducer self-heating. Killingback AL; Newey VR; El-Brawany MA; Nassiri DK Ultrasound Med Biol; 2008 Dec; 34(12):2035-42. PubMed ID: 18723269 [TBL] [Abstract][Full Text] [Related]
14. MRI-guided gas bubble enhanced ultrasound heating in in vivo rabbit thigh. Sokka SD; King R; Hynynen K Phys Med Biol; 2003 Jan; 48(2):223-41. PubMed ID: 12587906 [TBL] [Abstract][Full Text] [Related]
15. Thermal properties and changes of acoustic parameters in an egg white phantom during heating and coagulation by high intensity focused ultrasound. Divkovic GW; Liebler M; Braun K; Dreyer T; Huber PE; Jenne JW Ultrasound Med Biol; 2007 Jun; 33(6):981-6. PubMed ID: 17434665 [TBL] [Abstract][Full Text] [Related]
16. Temperature change in lumbar periarticular tissue with continuous ultrasound. Morrisette DC; Brown D; Saladin ME J Orthop Sports Phys Ther; 2004 Dec; 34(12):754-60. PubMed ID: 15643730 [TBL] [Abstract][Full Text] [Related]
18. Ultrasound pressure distributions generated by high frequency transducers in large reactors. Leong T; Coventry M; Swiergon P; Knoerzer K; Juliano P Ultrason Sonochem; 2015 Nov; 27():22-29. PubMed ID: 26186816 [TBL] [Abstract][Full Text] [Related]
19. Acoustic and thermal characterization of agar based phantoms used for evaluating focused ultrasound exposures. Menikou G; Damianou C J Ther Ultrasound; 2017; 5():14. PubMed ID: 28572977 [TBL] [Abstract][Full Text] [Related]
20. Determining temperature distribution in tissue in the focal plane of the high (>100 W/cm(2)) intensity focused ultrasound beam using phase shift of ultrasound echoes. Karwat P; Kujawska T; Lewin PA; Secomski W; Gambin B; Litniewski J Ultrasonics; 2016 Feb; 65():211-9. PubMed ID: 26498063 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]