BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 25642190)

  • 1. The pathophysiology of extracellular hemoglobin associated with enhanced oxidative reactions.
    Rifkind JM; Mohanty JG; Nagababu E
    Front Physiol; 2014; 5():500. PubMed ID: 25642190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-specific cross-linking of human and bovine hemoglobins differentially alters oxygen binding and redox side reactions producing rhombic heme and heme degradation.
    Nagababu E; Ramasamy S; Rifkind JM; Jia Y; Alayash AI
    Biochemistry; 2002 Jun; 41(23):7407-15. PubMed ID: 12044174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of oxidative reactions of hemoglobin in the design of blood substitutes: role of the ascorbate-glutathione antioxidant system.
    Simoni J; Villanueva-Meyer J; Simoni G; Moeller JF; Wesson DE
    Artif Organs; 2009 Feb; 33(2):115-26. PubMed ID: 19178455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemoglobin Oxidation Reactions in Stored Blood.
    Alayash AI
    Antioxidants (Basel); 2022 Apr; 11(4):. PubMed ID: 35453432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging.
    Mohanty JG; Nagababu E; Rifkind JM
    Front Physiol; 2014; 5():84. PubMed ID: 24616707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and site specificity of hydroperoxide-induced oxidative damage in red blood cells.
    van den Berg JJ; Op den Kamp JA; Lubin BH; Roelofsen B; Kuypers FA
    Free Radic Biol Med; 1992; 12(6):487-98. PubMed ID: 1601324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting storage-dependent damage to red blood cells using nitrite oxidation kinetics, peroxiredoxin-2 oxidation, and hemoglobin and free heme measurements.
    Oh JY; Stapley R; Harper V; Marques MB; Patel RP
    Transfusion; 2015 Dec; 55(12):2967-78. PubMed ID: 26202471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation and Detection of Highly Oxidized Hemoglobin Forms in Biological Fluids during Hemolytic Conditions.
    Nyakundi BB; Erdei J; Tóth A; Balogh E; Nagy A; Nagy B; Novák L; Bognár L; Paragh G; Kappelmayer J; Jeney V
    Oxid Med Cell Longev; 2020; 2020():8929020. PubMed ID: 32377310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction of hydrogen peroxide with ferrylhemoglobin: superoxide production and heme degradation.
    Nagababu E; Rifkind JM
    Biochemistry; 2000 Oct; 39(40):12503-11. PubMed ID: 11015232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemoglobin redox reactions and red blood cell aging.
    Rifkind JM; Nagababu E
    Antioxid Redox Signal; 2013 Jun; 18(17):2274-83. PubMed ID: 23025272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin trapping combined with quantitative mass spectrometry defines free radical redistribution within the oxidized hemoglobin:haptoglobin complex.
    Vallelian F; Garcia-Rubio I; Puglia M; Kahraman A; Deuel JW; Engelsberger WR; Mason RP; Buehler PW; Schaer DJ
    Free Radic Biol Med; 2015 Aug; 85():259-68. PubMed ID: 25933590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Haptoglobin, hemopexin, and related defense pathways-basic science, clinical perspectives, and drug development.
    Schaer DJ; Vinchi F; Ingoglia G; Tolosano E; Buehler PW
    Front Physiol; 2014; 5():415. PubMed ID: 25389409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation reactions of cellular and acellular hemoglobins: Implications for human health.
    Alayash AI
    Front Med Technol; 2022; 4():1068972. PubMed ID: 36518991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peroxiredoxin-2 recycling is inhibited during erythrocyte storage.
    Harper VM; Oh JY; Stapley R; Marques MB; Wilson L; Barnes S; Sun CW; Townes T; Patel RP
    Antioxid Redox Signal; 2015 Feb; 22(4):294-307. PubMed ID: 25264713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathological conditions involving extracellular hemoglobin: molecular mechanisms, clinical significance, and novel therapeutic opportunities for α(1)-microglobulin.
    Olsson MG; Allhorn M; Bülow L; Hansson SR; Ley D; Olsson ML; Schmidtchen A; Akerström B
    Antioxid Redox Signal; 2012 Sep; 17(5):813-46. PubMed ID: 22324321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies of hemoglobin denaturation and Heinz body formation in the unstable hemoglobins.
    Winterbourn CC; Carrell RW
    J Clin Invest; 1974 Sep; 54(3):678-89. PubMed ID: 4854449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heme degradation and oxidative stress in murine models for hemoglobinopathies: thalassemia, sickle cell disease and hemoglobin C disease.
    Nagababu E; Fabry ME; Nagel RL; Rifkind JM
    Blood Cells Mol Dis; 2008; 41(1):60-6. PubMed ID: 18262448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural history of the bruise: formation, elimination, and biological effects of oxidized hemoglobin.
    Jeney V; Eaton JW; Balla G; Balla J
    Oxid Med Cell Longev; 2013; 2013():703571. PubMed ID: 23766858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atherogenesis may involve the prooxidant and proinflammatory effects of ferryl hemoglobin.
    Potor L; Bányai E; Becs G; Soares MP; Balla G; Balla J; Jeney V
    Oxid Med Cell Longev; 2013; 2013():676425. PubMed ID: 23766856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Haptoglobin attenuates hemoglobin-induced heme oxygenase-1 in renal proximal tubule cells and kidneys of a mouse model of sickle cell disease.
    Chintagari NR; Nguyen J; Belcher JD; Vercellotti GM; Alayash AI
    Blood Cells Mol Dis; 2015 Mar; 54(3):302-6. PubMed ID: 25582460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.