These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 25642595)
21. How Does Agonist and Antagonist Binding Lead to Different Conformational Ensemble Equilibria of the κ-Opioid Receptor: Insight from Long-Time Gaussian Accelerated Molecular Dynamics Simulation. An X; Bai Q; Bing Z; Zhou S; Shi D; Liu H; Yao X ACS Chem Neurosci; 2019 Mar; 10(3):1575-1584. PubMed ID: 30372027 [TBL] [Abstract][Full Text] [Related]
22. Structure-Based Prediction of G-Protein-Coupled Receptor Ligand Function: A β-Adrenoceptor Case Study. Kooistra AJ; Leurs R; de Esch IJ; de Graaf C J Chem Inf Model; 2015 May; 55(5):1045-61. PubMed ID: 25848966 [TBL] [Abstract][Full Text] [Related]
23. Azepinone as a conformational constraint in the design of kappa-opioid receptor agonists. Tuthill PA; Seida PR; Barker W; Cassel JA; Belanger S; DeHaven RN; Koblish M; Gottshall SL; Little PJ; DeHaven-Hudkins DL; Dolle RE Bioorg Med Chem Lett; 2004 Nov; 14(22):5693-7. PubMed ID: 15482950 [TBL] [Abstract][Full Text] [Related]
24. Molecular simulation of dynorphin A-(1-10) binding to extracellular loop 2 of the kappa-opioid receptor. A model for receptor activation. Paterlini G; Portoghese PS; Ferguson DM J Med Chem; 1997 Sep; 40(20):3254-62. PubMed ID: 9379445 [TBL] [Abstract][Full Text] [Related]
25. SuperBiHelix method for predicting the pleiotropic ensemble of G-protein-coupled receptor conformations. Bray JK; Abrol R; Goddard WA; Trzaskowski B; Scott CE Proc Natl Acad Sci U S A; 2014 Jan; 111(1):E72-8. PubMed ID: 24344284 [TBL] [Abstract][Full Text] [Related]
26. A combined ligand-based and target-based drug design approach for G-protein coupled receptors: application to salvinorin A, a selective kappa opioid receptor agonist. Singh N; Chevé G; Ferguson DM; McCurdy CR J Comput Aided Mol Des; 2006; 20(7-8):471-93. PubMed ID: 17009091 [TBL] [Abstract][Full Text] [Related]
27. 3D-pharmacophore identification for kappa-opioid agonists using ligand-based drug-design techniques. Yamaotsu N; Hirono S Top Curr Chem; 2011; 299():277-307. PubMed ID: 21630511 [TBL] [Abstract][Full Text] [Related]
28. Docking and free energy perturbation studies of ligand binding in the kappa opioid receptor. Goldfeld DA; Murphy R; Kim B; Wang L; Beuming T; Abel R; Friesner RA J Phys Chem B; 2015 Jan; 119(3):824-35. PubMed ID: 25395044 [TBL] [Abstract][Full Text] [Related]
29. Predicted structures of agonist and antagonist bound complexes of adenosine A3 receptor. Kim SK; Riley L; Abrol R; Jacobson KA; Goddard WA Proteins; 2011 Jun; 79(6):1878-97. PubMed ID: 21488099 [TBL] [Abstract][Full Text] [Related]
30. In vivo binding of benzomorphans to mu, delta and kappa opioid receptors: comparison with urine output in the rat. Richards ML; Sadée W J Pharmacol Exp Ther; 1985 May; 233(2):425-32. PubMed ID: 2987482 [TBL] [Abstract][Full Text] [Related]
31. The mechanism of ligand-induced activation or inhibition of μ- and κ-opioid receptors. Yuan S; Palczewski K; Peng Q; Kolinski M; Vogel H; Filipek S Angew Chem Int Ed Engl; 2015 Jun; 54(26):7560-3. PubMed ID: 25968837 [TBL] [Abstract][Full Text] [Related]
32. PREDICT modeling and in-silico screening for G-protein coupled receptors. Shacham S; Marantz Y; Bar-Haim S; Kalid O; Warshaviak D; Avisar N; Inbal B; Heifetz A; Fichman M; Topf M; Naor Z; Noiman S; Becker OM Proteins; 2004 Oct; 57(1):51-86. PubMed ID: 15326594 [TBL] [Abstract][Full Text] [Related]
33. [The mu, delta and kappa properties of various opioids]. Ohta S; Niwa M; Nozaki M; Hattori M; Shimonaka H; Dohi S Masui; 1995 Sep; 44(9):1228-32. PubMed ID: 8523655 [TBL] [Abstract][Full Text] [Related]
34. Structural basis for ligand binding and specificity in adrenergic receptors: implications for GPCR-targeted drug discovery. Huber T; Menon S; Sakmar TP Biochemistry; 2008 Oct; 47(42):11013-23. PubMed ID: 18821775 [TBL] [Abstract][Full Text] [Related]
35. Differentiating aspects of opioid receptor binding by [3H](-) (1R,5R,9R,2''S)-5,9-dimethyl-2-tetrahydrofurfuryl-2'-hydroxy-6,7- benzomorphan hydrochloride ([3H]Mr 2034), a drug preferentially acting on kappa-receptors. Ensinger HA Arzneimittelforschung; 1985; 35(1A):447-51. PubMed ID: 2985096 [TBL] [Abstract][Full Text] [Related]
36. Agonist and antagonist activity of kappa opioids in the squirrel monkey: I. Antinociception and urine output. Craft RM; Dykstra LA J Pharmacol Exp Ther; 1992 Jan; 260(1):327-33. PubMed ID: 1309876 [TBL] [Abstract][Full Text] [Related]
37. Solubilization and preliminary characterization of mu and kappa opiate receptor subtypes from rat brain. Chow T; Zukin RS Mol Pharmacol; 1983 Sep; 24(2):203-12. PubMed ID: 6310362 [TBL] [Abstract][Full Text] [Related]
38. Current assessment of docking into GPCR crystal structures and homology models: successes, challenges, and guidelines. Beuming T; Sherman W J Chem Inf Model; 2012 Dec; 52(12):3263-77. PubMed ID: 23121495 [TBL] [Abstract][Full Text] [Related]
39. Morphine can produce analgesia via spinal kappa opioid receptors in the absence of mu opioid receptors. Yamada H; Shimoyama N; Sora I; Uhl GR; Fukuda Y; Moriya H; Shimoyama M Brain Res; 2006 Apr; 1083(1):61-9. PubMed ID: 16530171 [TBL] [Abstract][Full Text] [Related]
40. Conformational and Thermodynamic Landscape of GPCR Activation from Theory and Computation. Dong SS; Goddard WA; Abrol R Biophys J; 2016 Jun; 110(12):2618-2629. PubMed ID: 27332120 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]