These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
507 related articles for article (PubMed ID: 25642629)
1. Challenges in DNA motion control and sequence readout using nanopore devices. Carson S; Wanunu M Nanotechnology; 2015 Feb; 26(7):074004. PubMed ID: 25642629 [TBL] [Abstract][Full Text] [Related]
2. Threading DNA through nanopores for biosensing applications. Fyta M J Phys Condens Matter; 2015 Jul; 27(27):273101. PubMed ID: 26061408 [TBL] [Abstract][Full Text] [Related]
3. Nanopore sequencing: from imagination to reality. Bayley H Clin Chem; 2015 Jan; 61(1):25-31. PubMed ID: 25477535 [No Abstract] [Full Text] [Related]
4. The emergence of nanopores in next-generation sequencing. Steinbock LJ; Radenovic A Nanotechnology; 2015 Feb; 26(7):074003. PubMed ID: 25643284 [TBL] [Abstract][Full Text] [Related]
6. Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor. Liu L; Yang C; Zhao K; Li J; Wu HC Nat Commun; 2013; 4():2989. PubMed ID: 24352224 [TBL] [Abstract][Full Text] [Related]
7. DNA-based detection of mercury(II) ions through characteristic current signals in nanopores with high sensitivity and selectivity. Zeng T; Li T; Li Y; Liu L; Wang X; Liu Q; Zhao Y; Wu HC Nanoscale; 2014 Aug; 6(15):8579-84. PubMed ID: 24975417 [TBL] [Abstract][Full Text] [Related]
8. Hybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores. Hall AR; Scott A; Rotem D; Mehta KK; Bayley H; Dekker C Nat Nanotechnol; 2010 Dec; 5(12):874-7. PubMed ID: 21113160 [TBL] [Abstract][Full Text] [Related]
9. Interrogating single proteins through nanopores: challenges and opportunities. Movileanu L Trends Biotechnol; 2009 Jun; 27(6):333-41. PubMed ID: 19394097 [TBL] [Abstract][Full Text] [Related]
12. A universal strategy for aptamer-based nanopore sensing through host-guest interactions inside α-hemolysin. Li T; Liu L; Li Y; Xie J; Wu HC Angew Chem Int Ed Engl; 2015 Jun; 54(26):7568-71. PubMed ID: 25966821 [TBL] [Abstract][Full Text] [Related]
13. Nanopore sequencing technology: research trends and applications. Rhee M; Burns MA Trends Biotechnol; 2006 Dec; 24(12):580-6. PubMed ID: 17055093 [TBL] [Abstract][Full Text] [Related]
14. Translocation of double-strand DNA through a silicon oxide nanopore. Storm AJ; Chen JH; Zandbergen HW; Dekker C Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 1):051903. PubMed ID: 16089567 [TBL] [Abstract][Full Text] [Related]
15. Slowing down DNA translocation through a nanopore by lowering fluid temperature. Yeh LH; Zhang M; Joo SW; Qian S Electrophoresis; 2012 Dec; 33(23):3458-65. PubMed ID: 23124983 [TBL] [Abstract][Full Text] [Related]
16. 1/f noise in graphene nanopores. Heerema SJ; Schneider GF; Rozemuller M; Vicarelli L; Zandbergen HW; Dekker C Nanotechnology; 2015 Feb; 26(7):074001. PubMed ID: 25629930 [TBL] [Abstract][Full Text] [Related]
17. Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Traversi F; Raillon C; Benameur SM; Liu K; Khlybov S; Tosun M; Krasnozhon D; Kis A; Radenovic A Nat Nanotechnol; 2013 Dec; 8(12):939-45. PubMed ID: 24240429 [TBL] [Abstract][Full Text] [Related]
18. Effects of Nanopore Charge Decorations on the Translocation Dynamics of DNA. Jou I; Muthukumar M Biophys J; 2017 Oct; 113(8):1664-1672. PubMed ID: 29045861 [TBL] [Abstract][Full Text] [Related]
19. Making nanopores from nanotubes. Siwy ZS; Davenport M Nat Nanotechnol; 2010 Mar; 5(3):174-5. PubMed ID: 20203619 [No Abstract] [Full Text] [Related]
20. Programmable DNA Nanoswitch Sensing with Solid-State Nanopores. Beamish E; Tabard-Cossa V; Godin M ACS Sens; 2019 Sep; 4(9):2458-2464. PubMed ID: 31449750 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]