These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 25642647)

  • 41. Comparative evaluation of Octopus semi-automated kinetic perimeter with Humphrey and Goldmann perimeters in neuro-ophthalmic disorders.
    Bhaskaran K; Phuljhele S; Kumar P; Saxena R; Angmo D; Sharma P
    Indian J Ophthalmol; 2021 Apr; 69(4):918-922. PubMed ID: 33727459
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Correlation of the multifocal visual evoked potential and standard automated perimetry in compressive optic neuropathies.
    Danesh-Meyer HV; Carroll SC; Gaskin BJ; Gao A; Gamble GD
    Invest Ophthalmol Vis Sci; 2006 Apr; 47(4):1458-63. PubMed ID: 16565379
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Age-dependent changes in visual sensitivity induced by moving fixation points in adduction and abduction using imo perimetry.
    Shoji T; Mine I; Kumagai T; Kosaka A; Yoshikawa Y; Shinoda K
    Sci Rep; 2020 Dec; 10(1):21175. PubMed ID: 33273620
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Feasibility of saccadic vector optokinetic perimetry: a method of automated static perimetry for children using eye tracking.
    Murray IC; Fleck BW; Brash HM; Macrae ME; Tan LL; Minns RA
    Ophthalmology; 2009 Oct; 116(10):2017-26. PubMed ID: 19560207
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Visual field recovery after vision restoration therapy (VRT) is independent of eye movements: an eye tracker study.
    Kasten E; Bunzenthal U; Sabel BA
    Behav Brain Res; 2006 Nov; 175(1):18-26. PubMed ID: 16970999
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fixation stability and location in patients with unilateral idiopathic epiretinal membrane.
    Tarita-Nistor L; Mandelcorn MS; Steinbach MJ; Mandelcorn ED; González EG
    Ophthalmic Surg Lasers Imaging Retina; 2013; 44(1):46-9. PubMed ID: 23410809
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of functional visual field loss by automated static perimetry.
    Frisén L
    Acta Ophthalmol; 2014 Dec; 92(8):805-9. PubMed ID: 24698019
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Objective perimetry using functional magnetic resonance imaging in patients with visual field loss.
    Furuta A; Nakadomari S; Misaki M; Miyauchi S; Iida T
    Exp Neurol; 2009 Jun; 217(2):401-6. PubMed ID: 19348794
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Flicker defined form and RareBit measurements lack in specificity of visual pathways.
    Szkudlarek-Wodzińska J; Przeździecka-Dołyk J; Fuchs O; Poznański Z; Misiuk-Hojło M
    Int J Ophthalmol; 2020; 13(3):417-424. PubMed ID: 32309178
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional changes at the preferred retinal locus in subjects with bilateral central vision loss.
    Krishnan AK; Bedell HE
    Graefes Arch Clin Exp Ophthalmol; 2018 Jan; 256(1):29-37. PubMed ID: 28971293
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of a test grid using Eye Movement Perimetry for screening glaucomatous visual field defects.
    Kadavath Meethal NS; Mazumdar D; Asokan R; Panday M; van der Steen J; Vermeer KA; Lemij HG; George RJ; Pel JJM
    Graefes Arch Clin Exp Ophthalmol; 2018 Feb; 256(2):371-379. PubMed ID: 29282563
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Perimetry while moving the eyes: implications for the variability of visual field defects.
    Toepfer A; Kasten E; Guenther T; Sabel BA
    J Neuroophthalmol; 2008 Dec; 28(4):308-19. PubMed ID: 19145132
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Static and dynamic retinal fixation stability in microperimetry.
    Longhin E; Convento E; Pilotto E; Bonin G; Vujosevic S; Kotsafti O; Midena E
    Can J Ophthalmol; 2013 Oct; 48(5):375-80. PubMed ID: 24093183
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Compass fundus automated perimetry.
    Fogagnolo P; Digiuni M; Montesano G; Rui C; Morales M; Rossetti L
    Eur J Ophthalmol; 2018 Sep; 28(5):481-490. PubMed ID: 29564933
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reduced Central Retinal Artery Blood Flow Is Related to Impaired Central Visual Function in Retinitis Pigmentosa Patients.
    Kayser S; Vargas P; Mendelsohn D; Han J; Bi H; Benavente A; Bittner AK
    Curr Eye Res; 2017 Nov; 42(11):1503-1510. PubMed ID: 28910168
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A modified method for measuring uniocular fields of fixation: reliability in healthy subjects and in patients with Graves orbitopathy.
    Haggerty H; Richardson S; Mitchell KW; Dickinson AJ
    Arch Ophthalmol; 2005 Mar; 123(3):356-62. PubMed ID: 15767478
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Equating spatial summation in visual field testing reveals greater loss in optic nerve disease.
    Kalloniatis M; Khuu SK
    Ophthalmic Physiol Opt; 2016 Jul; 36(4):439-52. PubMed ID: 27197562
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rarebit perimetry: normative values and test-retest variability.
    Chin CF; Yip LW; Sim DC; Yeo AC
    Clin Exp Ophthalmol; 2011 Nov; 39(8):752-9. PubMed ID: 22050562
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pseudo-loss of fixation in automated perimetry.
    Sanabria O; Feuer WJ; Anderson DR
    Ophthalmology; 1991 Jan; 98(1):76-8. PubMed ID: 2023737
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fixation Stability Recording: How Long for Eyes with Central Vision Loss?
    Tarita-Nistor L; Gill I; González EG; Steinbach MJ
    Optom Vis Sci; 2017 Mar; 94(3):311-316. PubMed ID: 27922924
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.