These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 2564274)
1. [Arg292----Val] or [Arg292----Leu] mutation enhances the reactivity of Escherichia coli aspartate aminotransferase with aromatic amino acids. Hayashi H; Kuramitsu S; Inoue Y; Morino Y; Kagamiyama H Biochem Biophys Res Commun; 1989 Feb; 159(1):337-42. PubMed ID: 2564274 [TBL] [Abstract][Full Text] [Related]
2. Replacement of an interdomain residue Val39 of Escherichia coli aspartate aminotransferase affects the catalytic competence without altering the substrate specificity of the enzyme. Hayashi H; Kuramitsu S; Kagamiyama H J Biochem; 1991 May; 109(5):699-704. PubMed ID: 1917893 [TBL] [Abstract][Full Text] [Related]
3. Active-site Arg --> Lys substitutions alter reaction and substrate specificity of aspartate aminotransferase. Vacca RA; Giannattasio S; Graber R; Sandmeier E; Marra E; Christen P J Biol Chem; 1997 Aug; 272(35):21932-7. PubMed ID: 9268327 [TBL] [Abstract][Full Text] [Related]
4. Effects of replacement of tryptophan-140 by phenylalanine or glycine on the function of Escherichia coli aspartate aminotransferase. Hayashi H; Inoue Y; Kuramitsu S; Morino Y; Kagamiyama H Biochem Biophys Res Commun; 1990 Mar; 167(2):407-12. PubMed ID: 2182010 [TBL] [Abstract][Full Text] [Related]
5. The structural basis for the altered substrate specificity of the R292D active site mutant of aspartate aminotransferase from E. coli. Almo SC; Smith DL; Danishefsky AT; Ringe D Protein Eng; 1994 Mar; 7(3):405-12. PubMed ID: 7909946 [TBL] [Abstract][Full Text] [Related]
6. Role of Asp222 in the catalytic mechanism of Escherichia coli aspartate aminotransferase: the amino acid residue which enhances the function of the enzyme-bound coenzyme pyridoxal 5'-phosphate. Yano T; Kuramitsu S; Tanase S; Morino Y; Kagamiyama H Biochemistry; 1992 Jun; 31(25):5878-87. PubMed ID: 1610831 [TBL] [Abstract][Full Text] [Related]
7. Noncoded amino acid replacement probes of the aspartate aminotransferase mechanism. Park Y; Luo J; Schultz PG; Kirsch JF Biochemistry; 1997 Aug; 36(34):10517-25. PubMed ID: 9265632 [TBL] [Abstract][Full Text] [Related]
8. Substitution of apolar residues in the active site of aspartate aminotransferase by histidine. Effects on reaction and substrate specificity. Vacca RA; Christen P; Malashkevich VN; Jansonius JN; Sandmeier E Eur J Biochem; 1995 Jan; 227(1-2):481-7. PubMed ID: 7851426 [TBL] [Abstract][Full Text] [Related]
9. Redesign of the substrate specificity of Escherichia coli aspartate aminotransferase to that of Escherichia coli tyrosine aminotransferase by homology modeling and site-directed mutagenesis. Onuffer JJ; Kirsch JF Protein Sci; 1995 Sep; 4(9):1750-7. PubMed ID: 8528073 [TBL] [Abstract][Full Text] [Related]
10. The use of natural and unnatural amino acid substrates to define the substrate specificity differences of Escherichia coli aspartate and tyrosine aminotransferases. Onuffer JJ; Ton BT; Klement I; Kirsch JF Protein Sci; 1995 Sep; 4(9):1743-9. PubMed ID: 8528072 [TBL] [Abstract][Full Text] [Related]
11. Directed evolution relieves product inhibition and confers in vivo function to a rationally designed tyrosine aminotransferase. Rothman SC; Voorhies M; Kirsch JF Protein Sci; 2004 Mar; 13(3):763-72. PubMed ID: 14767072 [TBL] [Abstract][Full Text] [Related]
13. Analysis of the substrate-recognition mode of aromatic amino acid aminotransferase by combined use of quasisubstrates and site-directed mutagenesis: systematic hydroxy-group addition/deletion studies to probe the enzyme-substrate interactions. Hayashi H; Inoue K; Mizuguchi H; Kagamiyama H Biochemistry; 1996 May; 35(21):6754-61. PubMed ID: 8639626 [TBL] [Abstract][Full Text] [Related]
14. Shift in pH-rate profile and enhanced discrimination between dicarboxylic and aromatic substrates in mitochondrial aspartate aminotransferase Y70H. Pan P; Jaussi R; Gehring H; Giannattasio S; Christen P Biochemistry; 1994 Mar; 33(10):2757-60. PubMed ID: 8130187 [TBL] [Abstract][Full Text] [Related]
16. Aspartate aminotransferase of E. coli: effects of site-directed mutagenesis on substrate recognition. Kagamiyama H J Nutr Sci Vitaminol (Tokyo); 1992; Spec No():216-9. PubMed ID: 1297744 [TBL] [Abstract][Full Text] [Related]
17. The tyrosine-225 to phenylalanine mutation of Escherichia coli aspartate aminotransferase results in an alkaline transition in the spectrophotometric and kinetic pKa values and reduced values of both kcat and Km. Goldberg JM; Swanson RV; Goodman HS; Kirsch JF Biochemistry; 1991 Jan; 30(1):305-12. PubMed ID: 1988027 [TBL] [Abstract][Full Text] [Related]
18. Substitution of a lysyl residue for arginine 386 of Escherichia coli aspartate aminotransferase. Inoue Y; Kuramitsu S; Inoue K; Kagamiyama H; Hiromi K; Tanase S; Morino Y J Biol Chem; 1989 Jun; 264(16):9673-81. PubMed ID: 2498335 [TBL] [Abstract][Full Text] [Related]
19. Role of arginine-292 in the substrate specificity of aspartate aminotransferase as examined by site-directed mutagenesis. Cronin CN; Kirsch JF Biochemistry; 1988 Jun; 27(12):4572-9. PubMed ID: 3167000 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional structure of a mutant E. coli aspartate aminotransferase with increased enzymic activity. Jäger J; Pauptit RA; Sauder U; Jansonius JN Protein Eng; 1994 May; 7(5):605-12. PubMed ID: 8073030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]