BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 25642749)

  • 1. An 8.68% efficiency chemically-doped-free graphene-silicon solar cell using silver nanowires network buried contacts.
    Yang L; Yu X; Hu W; Wu X; Zhao Y; Yang D
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4135-41. PubMed ID: 25642749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution-processed highly conductive PEDOT:PSS/AgNW/GO transparent film for efficient organic-Si hybrid solar cells.
    Xu Q; Song T; Cui W; Liu Y; Xu W; Lee ST; Sun B
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3272-9. PubMed ID: 25599588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The enhanced efficiency of graphene-silicon solar cells by electric field doping.
    Yu X; Yang L; Lv Q; Xu M; Chen H; Yang D
    Nanoscale; 2015 Apr; 7(16):7072-7. PubMed ID: 25588162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Composite Transparent Electrode of Graphene Nanowalls and Silver Nanowires on Micropyramidal Si for High-Efficiency Schottky Junction Solar Cells.
    Jiao T; Liu J; Wei D; Feng Y; Song X; Shi H; Jia S; Sun W; Du C
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20179-83. PubMed ID: 26308388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silver nanowire-graphene hybrid transparent conductive electrodes for highly efficient inverted organic solar cells.
    Ye N; Yan J; Xie S; Kong Y; Liang T; Chen H; Xu M
    Nanotechnology; 2017 Jul; 28(30):305402. PubMed ID: 28581437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid synthesis of ultra-long silver nanowires for tailor-made transparent conductive electrodes: proof of concept in organic solar cells.
    José Andrés L; Fe Menéndez M; Gómez D; Luisa Martínez A; Bristow N; Paul Kettle J; Menéndez A; Ruiz B
    Nanotechnology; 2015 Jul; 26(26):265201. PubMed ID: 26056864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Conducting Hybrid Silver-Nanowire-Embedded Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) for High-Efficiency Planar Silicon/Organic Heterojunction Solar Cells.
    Thomas JP; Rahman MA; Srivastava S; Kang JS; McGillivray D; Abd-Ellah M; Heinig NF; Leung KT
    ACS Nano; 2018 Sep; 12(9):9495-9503. PubMed ID: 30148603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermally Stable Silver Nanowires-Embedding Metal Oxide for Schottky Junction Solar Cells.
    Kim HS; Patel M; Park HH; Ray A; Jeong C; Kim J
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8662-9. PubMed ID: 26971560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible silver nanowire meshes for high-efficiency microtextured organic-silicon hybrid photovoltaics.
    Chen TG; Huang BY; Liu HW; Huang YY; Pan HT; Meng HF; Yu P
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6857-64. PubMed ID: 23167527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Performance of PEDOT:PSS/n-Si Solar Cells Based on Textured Surface with AgNWs Electrodes.
    Jiang X; Zhang P; Zhang J; Wang J; Li G; Fang X; Yang L; Chen X
    Nanoscale Res Lett; 2018 Feb; 13(1):53. PubMed ID: 29445956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silver Nanowires Binding with Sputtered ZnO to Fabricate Highly Conductive and Thermally Stable Transparent Electrode for Solar Cell Applications.
    Singh M; Rana TR; Kim S; Kim K; Yun JH; Kim J
    ACS Appl Mater Interfaces; 2016 May; 8(20):12764-71. PubMed ID: 27149372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved optical sintering efficiency at the contacts of silver nanowires encapsulated by a graphene layer.
    Yang SB; Choi H; Lee DS; Choi CG; Choi SY; Kim ID
    Small; 2015 Mar; 11(11):1293-300. PubMed ID: 25521110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Room-temperature nanojoining of silver nanowires by graphene oxide for highly conductive flexible transparent electrodes.
    Ding S; Zhang S; Yin T; Zhang H; Wang C; Wang Y; Li Q; Zhou N; Su F; Jiang Z; Tan D; Yang R
    Nanotechnology; 2022 Nov; 34(4):. PubMed ID: 36265462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic properties of embedded graphene: doped amorphous silicon/CVD graphene heterostructures.
    Arezki H; Boutchich M; Alamarguy D; Madouri A; Alvarez J; Cabarrocas PR; Kleider JP; Yao F; Hee Lee Y
    J Phys Condens Matter; 2016 Oct; 28(40):404001. PubMed ID: 27506254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-Step Process for High-Performance, Adhesive, Flexible Transparent Conductive Films Based on p-Type Reduced Graphene Oxides and Silver Nanowires.
    Lai YT; Tai NH
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18553-9. PubMed ID: 26247286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Buried MoO
    Xia Z; Gao P; Sun T; Wu H; Tan Y; Song T; Lee ST; Sun B
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13767-13773. PubMed ID: 29608047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells.
    Kim A; Won Y; Woo K; Kim CH; Moon J
    ACS Nano; 2013 Feb; 7(2):1081-91. PubMed ID: 23330971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene oxide as a p-dopant and an anti-reflection coating layer, in graphene/silicon solar cells.
    Yavuz S; Kuru C; Choi D; Kargar A; Jin S; Bandaru PR
    Nanoscale; 2016 Mar; 8(12):6473-8. PubMed ID: 26939945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes.
    Liang J; Li L; Tong K; Ren Z; Hu W; Niu X; Chen Y; Pei Q
    ACS Nano; 2014 Feb; 8(2):1590-600. PubMed ID: 24471886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved efficiency of hybrid organic photovoltaics by pulsed laser sintering of silver nanowire network transparent electrode.
    Spechler JA; Nagamatsu KA; Sturm JC; Arnold CB
    ACS Appl Mater Interfaces; 2015 May; 7(19):10556-62. PubMed ID: 25914946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.