These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
634 related articles for article (PubMed ID: 25642986)
1. Development of high energy density supercapacitor through hydrothermal synthesis of RGO/nano-structured cobalt sulphide composites. Jana M; Saha S; Samanta P; Murmu NC; Kim NH; Kuila T; Lee JH Nanotechnology; 2015 Feb; 26(7):075402. PubMed ID: 25642986 [TBL] [Abstract][Full Text] [Related]
2. One-step hydrothermal synthesis of 3D petal-like Co9S8/RGO/Ni3S2 composite on nickel foam for high-performance supercapacitors. Zhang Z; Wang Q; Zhao C; Min S; Qian X ACS Appl Mater Interfaces; 2015 Mar; 7(8):4861-8. PubMed ID: 25689800 [TBL] [Abstract][Full Text] [Related]
3. Glycol assisted synthesis of graphene-MnO2-polyaniline ternary composites for high performance supercapacitor electrodes. Mu B; Zhang W; Shao S; Wang A Phys Chem Chem Phys; 2014 May; 16(17):7872-80. PubMed ID: 24643731 [TBL] [Abstract][Full Text] [Related]
4. Hydrothermal growth of hierarchical Ni3S2 and Co3S4 on a reduced graphene oxide hydrogel@Ni foam: a high-energy-density aqueous asymmetric supercapacitor. Ghosh D; Das CK ACS Appl Mater Interfaces; 2015 Jan; 7(2):1122-31. PubMed ID: 25539030 [TBL] [Abstract][Full Text] [Related]
5. Covalent surface modification of chemically derived graphene and its application as supercapacitor electrode material. Jana M; Khanra P; Murmu NC; Samanta P; Lee JH; Kuila T Phys Chem Chem Phys; 2014 Apr; 16(16):7618-26. PubMed ID: 24643242 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and characterization of reduced graphene oxide decorated with CeO Ojha GP; Pant B; Park SJ; Park M; Kim HY J Colloid Interface Sci; 2017 May; 494():338-344. PubMed ID: 28167422 [TBL] [Abstract][Full Text] [Related]
7. Co9S8 nanotube arrays supported on nickel foam for high-performance supercapacitors. Pu J; Wang Z; Wu K; Yu N; Sheng E Phys Chem Chem Phys; 2014 Jan; 16(2):785-91. PubMed ID: 24276526 [TBL] [Abstract][Full Text] [Related]
8. Band Gap Engineering of Boron Nitride by Graphene and Its Application as Positive Electrode Material in Asymmetric Supercapacitor Device. Saha S; Jana M; Khanra P; Samanta P; Koo H; Murmu NC; Kuila T ACS Appl Mater Interfaces; 2015 Jul; 7(26):14211-22. PubMed ID: 26068665 [TBL] [Abstract][Full Text] [Related]
9. Development of 3D Urchin-Shaped Coaxial Manganese Dioxide@Polyaniline (MnO Ghosh K; Yue CY; Sk MM; Jena RK ACS Appl Mater Interfaces; 2017 May; 9(18):15350-15363. PubMed ID: 28414212 [TBL] [Abstract][Full Text] [Related]
10. Chlorine-doped reduced graphene oxide nanosheets as an efficient and stable electrode for supercapacitor in acidic medium. Kakaei K; Hamidi M; Husseindoost S J Colloid Interface Sci; 2016 Oct; 479():121-126. PubMed ID: 27388125 [TBL] [Abstract][Full Text] [Related]
11. Controllable in situ synthesis of epsilon manganese dioxide hollow structure/RGO nanocomposites for high-performance supercapacitors. Lin M; Chen B; Wu X; Qian J; Fei L; Lu W; Chan LW; Yuan J Nanoscale; 2016 Jan; 8(4):1854-60. PubMed ID: 26726127 [TBL] [Abstract][Full Text] [Related]
12. Facile synthesis of three dimensional hierarchical Co-Al layered double hydroxides on graphene as high-performance materials for supercapacitor electrode. Hao J; Yang W; Zhang Z; Lu B; Ke X; Zhang B; Tang J J Colloid Interface Sci; 2014 Jul; 426():131-6. PubMed ID: 24863775 [TBL] [Abstract][Full Text] [Related]
13. Electrochemical capacitance of Ni-doped metal organic framework and reduced graphene oxide composites: more than the sum of its parts. Banerjee PC; Lobo DE; Middag R; Ng WK; Shaibani ME; Majumder M ACS Appl Mater Interfaces; 2015 Feb; 7(6):3655-64. PubMed ID: 25612667 [TBL] [Abstract][Full Text] [Related]
14. Preparation and Capacitance of Ni Metal Organic Framework/Reduced Graphene Oxide Composites for Supercapacitors as Nanoarchitectonics. Kim J; Park SJ; Chung S; Kim S J Nanosci Nanotechnol; 2020 May; 20(5):2750-2754. PubMed ID: 31635611 [TBL] [Abstract][Full Text] [Related]
15. Superior supercapacitor performance of Bi Ghosh K; Srivastava SK Dalton Trans; 2020 Dec; 49(46):16993-17004. PubMed ID: 33191423 [TBL] [Abstract][Full Text] [Related]
16. Novel and facile method, dynamic self-assemble, to prepare SnO₂/rGO droplet aerogel with complex morphologies and their application in supercapacitors. Chen M; Wang H; Li L; Zhang Z; Wang C; Liu Y; Wang W; Gao J ACS Appl Mater Interfaces; 2014 Aug; 6(16):14327-37. PubMed ID: 25082758 [TBL] [Abstract][Full Text] [Related]
17. Porous Graphene Oxide Prepared on Nickel Foam by Electrophoretic Deposition and Thermal Reduction as High-Performance Supercapacitor Electrodes. Xu Y; Li J; Huang W Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28800098 [TBL] [Abstract][Full Text] [Related]
18. Enhanced Supercapacitor Performance Using a Co Ansarinejad H; Shabani-Nooshabadi M; Ghoreishi SM Chem Asian J; 2021 May; 16(10):1258-1270. PubMed ID: 33783970 [TBL] [Abstract][Full Text] [Related]
19. Direct Reduction of Graphene Oxide by Ni Foam as a High-Capacitance Supercapacitor Electrode. Yang J; Zhang E; Li X; Yu Y; Qu J; Yu ZZ ACS Appl Mater Interfaces; 2016 Jan; 8(3):2297-305. PubMed ID: 26711186 [TBL] [Abstract][Full Text] [Related]
20. Fine cutting edge shaped Bi Maruthamani D; Vadivel S; Kumaravel M; Saravanakumar B; Paul B; Dhar SS; Habibi-Yangjeh A; Manikandan A; Ramadoss G J Colloid Interface Sci; 2017 Jul; 498():449-459. PubMed ID: 28351011 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]