BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 25643103)

  • 1. Evaluating possible confounding by prescriber in comparative effectiveness research.
    Franklin JM; Schneeweiss S; Huybrechts KF; Glynn RJ
    Epidemiology; 2015 Mar; 26(2):238-41. PubMed ID: 25643103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Instrumental variable applications using nursing home prescribing preferences in comparative effectiveness research.
    Huybrechts KF; Gerhard T; Franklin JM; Levin R; Crystal S; Schneeweiss S
    Pharmacoepidemiol Drug Saf; 2014 Aug; 23(8):830-8. PubMed ID: 24664805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the performance of physician's prescribing preference as an instrumental variable in comparative effectiveness research with moderate and small sample sizes: a simulation study.
    Zhang L; Lewsey J; McAllister DA
    J Comp Eff Res; 2024 May; 13(5):e230044. PubMed ID: 38567966
    [No Abstract]   [Full Text] [Related]  

  • 4. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study.
    Austin PC; Grootendorst P; Anderson GM
    Stat Med; 2007 Feb; 26(4):734-53. PubMed ID: 16708349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Instrumental variable estimation of truncated local average treatment effects.
    Choi BY
    PLoS One; 2021; 16(4):e0249642. PubMed ID: 33819276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A theoretical exploration of therapeutic monomania as a physician-based instrumental variable.
    Potter BJ; Dormuth C; Le Lorier J
    Pharmacoepidemiol Drug Saf; 2020 Jan; 29 Suppl 1(Suppl 1):45-52. PubMed ID: 31094048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing causal treatment effect estimation when using large observational datasets.
    John ER; Abrams KR; Brightling CE; Sheehan NA
    BMC Med Res Methodol; 2019 Nov; 19(1):207. PubMed ID: 31726969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing the performance of two-stage residual inclusion methods when using physician's prescribing preference as an instrumental variable: unmeasured confounding and noncollapsibility.
    Zhang L; Lewsey J
    J Comp Eff Res; 2024 May; 13(5):e230085. PubMed ID: 38567965
    [No Abstract]   [Full Text] [Related]  

  • 9. Falsification Tests for Instrumental Variable Designs With an Application to Tendency to Operate.
    Keele L; Zhao Q; Kelz RR; Small D
    Med Care; 2019 Feb; 57(2):167-171. PubMed ID: 30520835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Matching by propensity score in cohort studies with three treatment groups.
    Rassen JA; Shelat AA; Franklin JM; Glynn RJ; Solomon DH; Schneeweiss S
    Epidemiology; 2013 May; 24(3):401-9. PubMed ID: 23532053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the ability of double-robust estimators to correct bias in propensity score matching analysis. A Monte Carlo simulation study.
    Nguyen TL; Collins GS; Spence J; Devereaux PJ; Daurès JP; Landais P; Le Manach Y
    Pharmacoepidemiol Drug Saf; 2017 Dec; 26(12):1513-1519. PubMed ID: 28984050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On a preference-based instrumental variable approach in reducing unmeasured confounding-by-indication.
    Li Y; Lee Y; Wolfe RA; Morgenstern H; Zhang J; Port FK; Robinson BM
    Stat Med; 2015 Mar; 34(7):1150-68. PubMed ID: 25546152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Confounder adjustment in observational comparative effectiveness researches: (2) statistical adjustment approaches for unmeasured confounders].
    Huang LL; Wei YY; Chen F
    Zhonghua Liu Xing Bing Xue Za Zhi; 2019 Nov; 40(11):1450-1455. PubMed ID: 31838820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo sensitivity analysis for unmeasured confounding in dynamic treatment regimes.
    Rose EJ; Moodie EEM; Shortreed SM
    Biom J; 2023 Jun; 65(5):e2100359. PubMed ID: 37017498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prognostic score-based balance measures can be a useful diagnostic for propensity score methods in comparative effectiveness research.
    Stuart EA; Lee BK; Leacy FP
    J Clin Epidemiol; 2013 Aug; 66(8 Suppl):S84-S90.e1. PubMed ID: 23849158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Instrumental variable methods in comparative safety and effectiveness research.
    Brookhart MA; Rassen JA; Schneeweiss S
    Pharmacoepidemiol Drug Saf; 2010 Jun; 19(6):537-54. PubMed ID: 20354968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of propensity scores and observational data to estimate randomized controlled trial generalizability bias.
    Pressler TR; Kaizar EE
    Stat Med; 2013 Sep; 32(20):3552-68. PubMed ID: 23553373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bias amplification in the g-computation algorithm for time-varying treatments: a case study of industry payments and prescription of opioid products.
    Inoue K; Goto A; Kondo N; Shinozaki T
    BMC Med Res Methodol; 2022 Apr; 22(1):120. PubMed ID: 35468735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnitude and direction of missing confounders had different consequences on treatment effect estimation in propensity score analysis.
    Nguyen TL; Collins GS; Spence J; Fontaine C; Daurès JP; Devereaux PJ; Landais P; Le Manach Y
    J Clin Epidemiol; 2017 Jul; 87():87-97. PubMed ID: 28412467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Good research practices for comparative effectiveness research: analytic methods to improve causal inference from nonrandomized studies of treatment effects using secondary data sources: the ISPOR Good Research Practices for Retrospective Database Analysis Task Force Report--Part III.
    Johnson ML; Crown W; Martin BC; Dormuth CR; Siebert U
    Value Health; 2009; 12(8):1062-73. PubMed ID: 19793071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.